查看更多>>摘要:A real-time plant species recognition under an unconstrained environment is a challenging and time-consuming process. The recognition model should cope up with the computer vision challenges such as scale variations, illumination changes, camera viewpoint or object orientation changes, cluttered backgrounds and structure of leaf (simple or compound). In this paper, a bilateral convolutional neural network (CNN) with machine learning classifiers are investigated in relation to the real-time implementation of plant species recognition. The CNN models considered are MobileNet, Xception and DenseNet-121. In the bilateral CNNs (Homogeneous/Heterogeneous type), the models are connected using the cascade early fusion strategy. The Bilateral CNN is used in the process of feature extraction. Then, the extracted features are classified using different machine learning classifiers such as Linear Discriminant Analysis (LDA), multinomial Logistic Regression (MLR), Naive Bayes (NB), k Nearest Neighbor (k-NN), Classification and Regression Tree (CART), Random Forest Classifier (RF), Bagging Classifier (BC), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). From the experimental investigation, it is observed that the multinomial Logistic Regression classifier performed better compared to other classifiers, irrespective of the bilateral CNN models (Homogeneous MoMoNet, XXNet, DeDeNet; Heterogeneous MoXNet, XDeNet, MoDeNet). It is also observed that the MoDeNet + MLR model attained the stateof-the-art results (Flavia: 98.71%, Folio: 96.38%, Swedish Leaf: 99.41%, custom created Leaf-12: 99.39%), irrespective of the dataset. The number of misprediction/class is highly reduced by utilizing the MoDeNet + MLR model for real-time plant species recognition.