首页期刊导航|ACS nano
期刊信息/Journal information
ACS nano
American Chemical Society
ACS nano

American Chemical Society

1936-0851

ACS nano/Journal ACS nanoEISCI
正式出版
收录年代

    Heteroatom-Doped Flash Graphene

    Chen, WeiyinGe, ChangLi, John TianciBeckham, Jacob L....
    11页
    查看更多>>摘要:Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic two-dimensional materials, and endow them with modified optical, electrical, and mechanical properties. Recent studies have shown the feasibility of preparing doped graphene from graphene oxide and its derivatives via some post-treatments, including solid-state and solvothermal methods, but they require reactive and harsh reagents. However, direct synthesis of various heteroatom-doped graphene in larger quantities and high purity through bottom-up methods remains challenging. Here, we report catalyst-free and solvent-free direct synthesis of graphene doped with various heteroatoms in bulk via flash Joule heating (FJH). Seven types of heteroatom-doped flash graphene (FG) are synthesized through millisecond flashing, including single-element-doped FG (boron, nitrogen, oxygen, phosphorus, sulfur), two-element-co-doped FG (boron and nitrogen), as well as three-element-co-doped FG (boron, nitrogen, and sulfur). A variety of low-cost dopants, such as elements, oxides, and organic compounds are used. The graphene quality of heteroatom-doped FG is high, and similar to intrinsic FG, the material exhibits turbostraticity, increased interlayer spacing, and superior dispersibility. Electrochemical oxygen reduction reaction of different heteroatom-doped FG is tested, and sulfur-doped FG shows the best performance. Lithium metal battery tests demonstrate that nitrogen-doped FG exhibits a smaller nucleation overpotential compared to Cu or undoped FG. The electrical energy cost for the synthesis of heteroatom-doped FG synthesis is only 1.2 to 10.7 kJ g(-1), which could render the FJH method suitable for low-cost mass production of heteroatom-doped graphene.

    Nanoscience and Entrepreneurship

    Mulvaney, PaulBuriak, Jillian M.Chen, XiaodongHu, Tony...
    2页

    SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective

    Kolel-Veetil, Manoj K.Kant, AayushShenoy, Vivek B.Buehler, Markus J....
    7页
    查看更多>>摘要:The COVID-19 pandemic has been inflicted upon humanity by the SARS-CoV-2 virus, the latest insidious incarnation of the coronaviruses group. While in its wake intense scientific research has produced breakthrough vaccines and cures, there still exists an immediate need to further understand the origin, mechanobiology and biochemistry, and destiny of this virus so that future pandemics arising from similar coronaviruses may be contained more effectively. In this Perspective, we discuss the various evidential findings of virus propagation and connect them to respective underpinning cellular biomechanical states leading to corresponding manifestations of the viral activity. We further propose avenues to tackle the virus, including from a "musical" vantage point, and contain its relentless strides that are currently afflicting the global populace.

    SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective

    Kolel-Veetil, Manoj K.Kant, AayushShenoy, Vivek B.Buehler, Markus J....
    7页
    查看更多>>摘要:The COVID-19 pandemic has been inflicted upon humanity by the SARS-CoV-2 virus, the latest insidious incarnation of the coronaviruses group. While in its wake intense scientific research has produced breakthrough vaccines and cures, there still exists an immediate need to further understand the origin, mechanobiology and biochemistry, and destiny of this virus so that future pandemics arising from similar coronaviruses may be contained more effectively. In this Perspective, we discuss the various evidential findings of virus propagation and connect them to respective underpinning cellular biomechanical states leading to corresponding manifestations of the viral activity. We further propose avenues to tackle the virus, including from a "musical" vantage point, and contain its relentless strides that are currently afflicting the global populace.

    How to Define a Nanozyme

    Robert, AnneMeunier, Bernard
    4页
    查看更多>>摘要:Over the past 15 years, many articles have considered "nanozymes" as ferromagnetic nanoparticles having an "intrinsic peroxidase-like activity" in the presence of hydrogen peroxide. However, the definition and the catalytic activity of these nanozymes have been questioned. The present Perspective reports the main criteria that are essential to classify a nanoparticle as a nanozyme. It is important to consider that not all nanoparticles able to generate hydroxyl radicals in the presence of hydrogen peroxide without catalytic activity can be registered as nanozymes.

    The Magnetic Genome of Two-Dimensional van der Waals Materials

    Augustin, MathiasVool, UriYin, Jia-XinLi, Lu Hua...
    120页
    查看更多>>摘要:Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.

    Sensors for Volatile Organic Compounds

    Khatib, MuhammadHaick, Hossam
    36页
    查看更多>>摘要:This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.

    Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges

    Zhao, FeiyunRen, AoboLi, PeihangLi, Yan...
    28页
    查看更多>>摘要:Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing highperformance and stable CW pumped perovskite lasers.

    Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges

    Zhao, FeiyunRen, AoboLi, PeihangLi, Yan...
    28页
    查看更多>>摘要:Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing highperformance and stable CW pumped perovskite lasers.

    Morphotaxy of Layered van der Waals Materials

    Lam, DavidLebedev, DmitryHersam, Mark C.
    24页
    查看更多>>摘要:Layered van der Waals (vdW) materials have attracted significant attention due to their materials properties that can enhance diverse applications including next-generation computing, biomedical devices, and energy conversion and storage technologies. This class of materials is typically studied in the two-dimensional (2D) limit by growing them directly on bulk substrates or exfoliating them from parent layered crystals to obtain single or few layers that preserve the original bonding. However, these vdW materials can also function as a platform for obtaining additional phases of matter at the nanoscale. Here, we introduce and review a synthesis paradigm, morphotaxy, where low-dimensional materials are realized by using the shape of an initial nanoscale precursor to template growth or chemical conversion. Using morphotaxy, diverse non-vdW materials such as HfO2 or InF3 can be synthesized in ultrathin form by changing the composition but preserving the shape of the original 2D layered material. Morphotaxy can also enable diverse atomically precise heterojunctions and other exotic structures such as Janus materials. Using this morphotaxial approach, the family of low-dimensional materials can be substantially expanded, thus creating vast possibilities for future fundamental studies and applied technologies.