首页期刊导航|Algorithmica: An international journal in computer science
期刊信息/Journal information
Algorithmica: An international journal in computer science
Springer New York LLC
Algorithmica: An international journal in computer science

Springer New York LLC

月刊

0178-4617

Algorithmica: An international journal in computer science/Journal Algorithmica: An international journal in computer scienceSCIISTP
正式出版
收录年代

    XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

    Hans L. BodlaenderCarla GroenlandHugo JacobLars Jaffke...
    465-506页
    查看更多>>摘要:Abstract In this paper, we showcase the class XNLP as a natural place for many hard problems parameterized by linear width measures. This strengthens existing W[1]-hardness proofs for these problems, since XNLP-hardness implies W[t]-hardness for all t. It also indicates, via a conjecture by Pilipczuk and Wrochna (ACM Trans Comput Theory 9:1–36, 2018), that any XP algorithm for such problems is likely to require XP space. In particular, we show XNLP-completeness for natural problems parameterized by pathwidth, linear clique-width, and linear mim-width. The problems we consider are Independent Set, Dominating Set, Odd Cycle Transversal, (q-)Coloring, Max Cut, Maximum Regular Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, Capacitated Vertex Cover and Bipartite Bandwidth.

    The Compact Genetic Algorithm Struggles on Cliff Functions

    Frank NeumannDirk SudholtCarsten Witt
    507-536页
    查看更多>>摘要:Abstract Estimation of distribution algorithms (EDAs) are general-purpose optimizers that maintain a probability distribution over a given search space. This probability distribution is updated through sampling from the distribution and a reinforcement learning process which rewards solution components that have shown to be part of good quality samples. The compact genetic algorithm (cGA) is a non-elitist EDA able to deal with difficult multimodal fitness landscapes that are hard to solve by elitist algorithms. We investigate the cGA on the Cliff function for which it was shown recently that non-elitist evolutionary algorithms and artificial immune systems optimize it in expected polynomial time. We point out that the cGA faces major difficulties when solving the Cliff function and investigate its dynamics both experimentally and theoretically. Our experimental results indicate that the cGA requires exponential time for all values of the update strength 1/K. We show theoretically that, under sensible assumptions, there is a negative drift when sampling around the location of the cliff. Experiments further suggest that there is a phase transition for K where the expected optimization time drops from nΘ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\Theta (n)}$$\end{document} to 2Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Theta (n)}$$\end{document}.

    Fixed Parameter Multi-Objective Evolutionary Algorithms for the W-Separator Problem

    Samuel BaguleyTobias FriedrichAneta NeumannFrank Neumann...
    537-571页
    查看更多>>摘要:Abstract Parameterized analysis provides powerful mechanisms for obtaining fine-grained insights into different types of algorithms. In this work, we combine this field with evolutionary algorithms and provide parameterized complexity analysis of evolutionary multi-objective algorithms for the W-separator problem, which is a natural generalization of the vertex cover problem. The goal is to remove the minimum number of vertices such that each connected component in the resulting graph has at most W vertices. We provide different multi-objective formulations involving two or three objectives that provably lead to fixed-parameter evolutionary algorithms with respect to the value of an optimal solution OPT and W. Of particular interest are kernelizations and the reducible structures used for them. We show that in expectation the algorithms make incremental progress in finding such structures and beyond. The current best known kernelization of the W-separator uses linear programming methods and requires non-trivial post-processing steps to extract the reducible structures. We provide additional structural features to show that evolutionary algorithms with appropriate objectives are also capable of extracting them. Our results show that evolutionary algorithms with different objectives guide the search and admit fixed parameterized runtimes to solve or approximate (even arbitrarily close) the W-separator problem.

    Guarding Polyominoes Under k-Hop Visibility

    Omrit FiltserErik KrohnBengt J. NilssonChristian Rieck...
    572-593页
    查看更多>>摘要:Abstract We study the Art Gallery Problem under k-hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most k. In this paper, we show that the VC dimension of this problem is 3 in simple polyominoes, and 4 in polyominoes with holes. Furthermore, we provide a reduction from Planar Monotone 3Sat, thereby showing that the problem is NP-complete even in thin polyominoes (i.e., polyominoes that do not a contain a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} block of cells). Complementarily, we present a linear-time 4-approximation algorithm for simple 2-thin polyominoes (which do not contain a 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} block of cells) for all k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document}.

    Reforming an Envy-Free Matching

    Takehiro ItoYuni IwamasaNaonori KakimuraNaoyuki Kamiyama...
    594-620页
    查看更多>>摘要:Abstract We consider the problem of reforming an envy-free matching when each agent has a strict preference over items and is assigned a single item. Given an envy-free matching, we consider an operation to exchange the item of an agent with an unassigned item preferred by the agent that results in another envy-free matching. We repeat this operation as long as we can. We prove that the resulting envy-free matching is uniquely determined up to the choice of an initial envy-free matching, and can be found in polynomial time. We call the resulting matching a reformist envy-free matching, and study a shortest sequence to obtain the reformist envy-free matching from an initial envy-free matching. We prove that a shortest sequence is computationally hard to obtain. We also give polynomial-time algorithms when each agent accepts at most three items or each item is accepted by at most two agents. Inapproximability and fixed-parameter (in)tractability are also discussed.