查看更多>>摘要:Medical Cyber-Physical Systems (MCPS) are complex, location-aware, networked systems of medical devices that can be used as a piece of the healing center to give the best medical care to patients. Hence, they integrate human, cyber, and physical elements. Since MCPSs are life-critical and context-aware, they are significant to the healthcare industry, which is prone to data breaches and cyber-attacks. As an emerging research area, MCPS faces several challenges with respect to system reliability, assurance, autonomy and security, and privacy. In this paper, we initially examine the state-of-the-arts of MCPS over the last few decades (1998-2020) and subsequently propose a new framework considering security/privacy for MPCS that incorporates several models that depict various domains of security. An interaction between various models followed with a qualitative assessment of the framework has been carried out to present a detailed description of the proposed framework. It is useful in various healthcare industries like health care services, manufacturing, Pharmaceuticals, etc. that utilize smart devices. Additionally, the framework may be applied to enhance security in the Internet of Things (IoT) environment. It may be also useful to deploy efficient workflow operations for patients under the consideration framework. The framework will also lay out the foundation for implementing cybersecurity infrastructures in many healthcare applications.
查看更多>>摘要:As embedded applications are subject to non-functional requirements (latency, safety, reliability, etc.) they require special care when it comes to providing assurances. Traditionally, these systems are quite static in their software and hardware composition. However, there is an increasing interest in enabling adaptivity and autonomy in embedded systems that cannot be satisfied with preprogrammed adaptations any more. Instead, it requires automated software composition in conjunction with model-based analyses that must adhere to requirements and constraints from various viewpoints. A major challenge in this matter is that embedded systems are subject to emergent constraints which are affected by inter-dependent properties resulting from the software composition and platform configuration. As these properties typically require an in-depth evaluation by complex analyses, a holistic formulation of parameters and their constraints is not applicable. We present a compositional framework for model-based integration of component-based embedded systems. The framework provides a structured approach to perform operations on a cross-layer model for model enrichment, synthesis and analysis. It thereby provides the overarching mechanisms to combine existing models, analyses and reasoning. Furthermore, it automates integration decisions and enables an iterative exploration of feasible system compositions. We demonstrate the applicability of this framework on a case study of a stereo-vision robot that uses a component-based operating system.
查看更多>>摘要:We investigate the mathematical properties of event bound functions as they are used in the worst-case response time analysis and utilization tests. We figure out the differences and similarities between the two approaches. Based on this analysis, we derive a more general form do describe events and event bounds. This new unified approach gives clear new insights in the investigation of real-time systems, simplifies the models and will support algebraic proofs in future work. In the end, we present a unified analysis which allows the algebraic definition of any scheduler. Introducing such functions to the real-time scheduling theory will lead two a more systematic way to integrate new concepts and applications to the theory. Last but not least, we show how the response time analysis in dynamic scheduling can be improved.