查看更多>>摘要:In order to enhance the stability and bioavailability of fat-soluble kaempferol (Kae), the zein-pectin nanoemulsions were synthesized by a novel dual-frequency pulsed ultrasound (DFPU) technology to improve the loading effect of Kae. The effects of ultrasonic operating parameters on the nanoemulsions were examined, along with the influence of DFPU treatment on the structure, stability, digestion, and intracellular uptake of the nanoemulsions in this study. The results indicated that both emulsion encapsulation and DFPU treatment significantly enhanced the protection and delivery of Kae. Compared to the unsonicated emulsion, the emulsifying activity index, stability index, Kae embedding rate, and hydroxyl radical scavenging rate increased by 133.81 %, 4.18 %, 19.20 %, and 19.73 %, respectively, while the particle size decreased by 94.43 % after DFPU treatment. DFPU treatment notably improved the stability of the nanoemulsions during long-term storage, high temperature, and salt concentration conditions, as well as the retention of Kae by 15.59 % in intestinal digestives. Furthermore, DFPU treatment significantly enhanced the Caco-2 intracellular absorption rate, transport rate and bioavailability of Kae by 7.67 %, 9.96 % and 14.67 %, respectively at a dosage of 0.6 mg/mL, which was attributed to the significant downregulation of mRNA expression levels of tight junction protein Occludin and efflux proteins MDR1 and BCRP by 21.27 %, 51.05 %, and 62.26 %, respectively. This downregulation enhanced the intracellular transport capacity of Kae while reducing its exocytosis, thereby improving cellular utilization. The mechanism of improving the intracellular bioavailability of kaempferol was elucidated. This study offers a promising nanoemulsion for the efficient oral delivery of fat-soluble active ingredients, fully facilitating its antioxidant activity.