查看更多>>摘要:Shrinkage cracking occurs in cement-treated bases because of desiccation and cement hydration; eventually these cracks start to reflect through the pavement surfacing. Although initially considered cosmetic, these cracks open the pavement to water infiltration and increase the likelihood of accelerated pavement distress. Numerous options exist for minimizing the amount of reflective cracks that appear; microcracking is a promising approach. The microcracking concept can be defined as the application of several vibratory roller passes to the cement-treated base at a short curing stage, typically after 1 to 3 days, to create a fine network of cracks. In addition to the microcracked test sites, the contractor constructed moist-cured, dry-cured, and asphalt membrane-cured sites for comparison. Researchers used falling weight deflectometer (FWD) tests to control the microcracking process, periodic crack surveys to monitor crack performance, and FWD tests through time to track base moduli. Microcracking proved quite effective at reducing shrinkage cracking problems in the base; applying the procedure with three passes of the roller after 2 to 3 days of curing resulted in the best performance. In addition, researchers observed that, without microcracking, excessively high cement contents resulted in problematic cracking in the base even if they were cured according to good construction practice. Microcracking did not result in pavement damage or diminished in-service modulus; thus, microcracking should be considered a viable and inexpensive option to incorporate shrinkage crack control into the construction of cement-treated bases.
W. Spencer GuthrieTyler B. YoungBrandon J. BlankenagelDane A. Cooley...
p.12-19页
查看更多>>摘要:To avoid early-age damage to cement-treated base (CTB) materials, the cement must be allowed to cure before the pavement can be opened to traffic. The purpose of this research was to evaluate the utilities of the soil stiffness gauge (SSG), the heavy Clegg impact soil tester (CIST), the dynamic cone penetrometer, and the falling weight deflectometer for assessing early-age strength gain of cement-stabilized materials. Experiments were performed at four sites on a pavement reconstruction project along I-84 in Morgan, Utah, where cement stabilization was used in conjunction with full-depth recycling. Each site was stationed to facilitate repeated measurements at the same locations with different devices and at different curing times. Because of the considerable attention from the pavement construction industry for routine quality control and quality assurance programs, the SSG and CIST were the primary focus of the research. Statistical techniques were used to evaluate the repeatability of these devices and their sensitivity to curing time. The results indicated that although the SSG was more repeatable at one site, the CIST data were markedly more sensitive to curing time than the SSG data at all cement-treated sites during the first 72 h after construction. For this reason, the data suggest that the CIST offers greater overall utility than the SSG for monitoring early-age strength gain of CTB. Further research is needed to investigate appropriate thresholds and protocols for these testing methods that ensure adequate reliability of the collected data.
查看更多>>摘要:In October 2000 the Mississippi Department of Transportation (MDOT) initiated a study to evaluate the long-term performance of lime-fly ash (LFA) stabilized soil as a base course material. This study entailed performing falling weight deflectometer (FWD) tests on both newer and older pavements and coring pavement at each FWD location to observe the condition of the layers, to obtain pavement thicknesses, and to perform unconfined compressive strength (UCS) testing. Visual observation, backcalculated modulus, and in situ structural layer coefficient values showed that MDOT LFA-stabilized soil base courses have highly variable material properties and thicknesses. Recommendations were made to increase the average LFA material property values and to reduce the spread in these values by increasing the required compaction of the LFA-stabilized soil base layer to 100% standard Proctor effort, setting the required in situ Proctor UCS at 400 psi, and reducing variability by either improving the current method of field-mixed-in-place stabilization or requiring plant-mixed material with placement of the blended material via a paver. It is further recommended to increase the typical LFA-stabilized soil base layer design thickness from 6 to 8 in. and to use a 6-in. chemically stabilized subgrade layer to provide additional support to the pavement structure.
William H. BushmanThomas E. FreemanEdward J. Hoppe
p.28-33页
查看更多>>摘要:An amendment to Virginia House Bill 1400, Item 490, No. 1h, calls for the Virginia Transportation Research Council to "continue its evaluation of soil stabilizers as an alternative to paving low-volume secondary roads." In response, promising soil stabilization products were evaluated with the relatively new technique of deeply mixing chemical additives into unpaved roadbeds. This work is based on the construction of a 1.75-m-long trial installation on Old Wheatland Road in Loudoun County, where seven commercially available stabilization products were applied to the unpaved road. A rigorous evaluation of treatment performance will provide the basis for recommendations to the Virginia Department of Transportation's operating divisions regarding improvements to the maintenance practices for gravel roads. Results thus far indicate that the introduction of soil stabilizers through deep mixing is a promising technique. The life-cycle cost analysis indicates that constructing a standard bituminous surface-treated roadway and maintaining it as such is much more cost-effective than using any of the products in this trial. Further, the analysis indicates that using the bituminous surface treatment alternative is also much more cost-effective than maintaining an unpaved road.
查看更多>>摘要:A laboratory experiment was conducted to evaluate the effect of two products used to accelerate strength improvement of a silty sand (SM) material stabilized with nontraditional stabilizers. SM soil samples were mixed with selected products and tested under both "wet" and dry conditions after 1- and 7-day cures. Nine nontraditional stabilizers, including lignosulfonates, polymers, silicates, and tree resins, were evaluated in this experiment. Two accelerator products, an acrylic polymer and Type Ⅰ portland cement, were evaluated. Samples were also stabilized with either an asphalt emulsion or cement to provide a comparison for traditional stabilizers under the same conditions. The average uncon-fined compressive strength (UCS) of three replicates of each mixture was compared with the results of the remaining mixtures, the traditional stabilization results, and a series of untreated control samples. The results indicate increased UCS of samples stabilized with Silicate 1 and Polymer 3 compared with both the untreated control series and the traditional stabilization alternatives. Lignosulfonate 1; Polymers 1, 2, 4, 5, and 6; and Tree Resin 1 did not demonstrate significant increased strength over the control series for the conditions of this experiment. The UCS following the 7-day cure provided the maximum UCS of the samples evaluated in both wet and dry conditions. One accelerator, cement, in combination with a nontraditional stabilizer did show significant improvement in early strength gain when compared to the control series.
Woon-Hyung KimTuncer B. EdilCraig H. BensonBurak F. Tanyu...
p.43-50页
查看更多>>摘要:A study was conducted in the field and with a large-scale model experiment (LSME) to evaluate the structural contribution of a 0.30-m-thick geosynthetic-reinforced granular layer used as a working platform for construction over soft subgrade. The study was conducted in the context of the 1993 AASHTO design guideline, in which the structural number (SN) of the pavement is based on layer coefficients (each defined using a resilient modulus). Working platforms reinforced with geosynthetics had smaller elastic deflections and larger elastic moduli than unreinforced working platforms with the same thickness. Reinforcement factors obtained in the field ranged from 1.2 to 1.8; those obtained in the laboratory ranged from 1.7 to 2.0, with greater reinforcement factors for the less extensible geosynthetics (geogrid, woven geotextile) for a 0.3-m-thick granular working platform. Of the four geosynthetics tested, the geogrid resulted in the greatest increase in modulus. Reinforcing the working platforms with geosynthetics resulted in increases in layer coefficients ranging from 50% to 70%. Similarly, increases in SN for a typical pavement structure were realized, ranging from 3% to 11% when all other factors were equal.
查看更多>>摘要:The use of calcium-based stabilizers such as calcium oxide (lime) in sulfate-bearing clay soils has historically led to structural distress because of the formation of a mineral called ettringite and possibly thau-masite. In trying to control the damage associated with such formations, engineers have attempted to determine a threshold level of soluble sulfates—a quantity that is relatively easy and quick to measure at which significant ettringite growth and, therefore, structural distress occurs. This is indeed a complex problem related to not only soil composition but also construction methods, availability of water, ion migration, and the ability of the void structure to accommodate the expansive mineral growth. Unfortunately, experience alone and rules-of-thumb based on experience are not sufficient to deal with this complex issue. Thermodynamic geochemical models of the lime-treated soil can be used as a first step toward establishing thresholds for problematic levels of soluble sulfates for a specific soil. A foundation for the model development is presented, and two soils are compared to illustrate their sensitivities to ettringite growth on the addition of lime. Because the model predicts ettringite growth on the basis of site-specific properties, the model can be used to assess the potential amelioration effects of soluble silica.
查看更多>>摘要:A laboratory research program designed to investigate geotextile and geogrid reinforcement of the aggregate layer in unbound pavement sections was performed by the U.S. Army Engineer Research and Development Center. The investigation's objective was to evaluate the performance of geosynthetic-reinforced aggregate road sections over a very soft subgrade. Standard construction materials were used to construct six aggregate road sections in a large steel box. Each instrumented road section was subjected to cyclic plate load tests to evaluate the performance of the model pavement sections under simulated truck traffic. The mechanistic response and permanent deformation of each instrumented pavement section were monitored periodically during each test. Analysis of the experiment data indicated that the geosynthetics improved the performance of the reinforced pavement sections compared with the un-reinforced section in terms of improved load distribution and reduced permanent deformation or rutting. Additional information regarding the reinforcement mechanisms is summarized.
Burak F. TanyuWoon-Hyung KimTuncer B. EdilCraig H. Benson...
p.70-77页
查看更多>>摘要:A methodology was developed to incorporate the structural contribution of working platforms, including those constructed with industrial byproducts, into the design of flexible pavements. Structural contribution of the working platform was quantified with the 1993 AASHTO flexible pavement design guide in terms of a structural number or an effective roadbed modulus. Two methods are proposed. One method treats the working platform as a subbase layer and assigns a structural number to the working platform for use in computing the overall structural number of the pavement. The other method adjusts the effective roadbed modulus to account for the improvement in the roadbed provided by the working platform. Resilient modulus obtained from large-scale model experiments conducted on several working platform materials (e.g., breaker run stone, Grade 2 gravel, foundry slag, foundry sand, and bottom ash) was used in the analysis. Design charts show the structural number or the roadbed modulus as a function of type of material and thickness of the working platform.
Gary R. ConsolazioDavid R. CowanAlexander BiggsRonald A. Cook...
p.81-93页
查看更多>>摘要:Bridges that span navigable waterways must be designed to resist potential impact loads associated with barge or ship collisions. Despite this fact, few experimental data have been collected about the magnitude and nature of such loads. Vessel-impact components of bridge design specifications, such as the AASHTO bridge design provisions, are therefore based on limited experimental data. Recently, a bridge in the United States (Florida) was replaced with a new structure and thus afforded a unique opportunity to conduct full-scale barge impact tests on piers of the preexisting structure before it was demolished. Tests were conducted on two piers with fundamentally different types of foundation systems. Tests on one pier also were repeated in two structural configurations (with the superstructure present and then with it removed). In each test, instrumentation and high-speed data acquisition systems were used to quantify the dynamic loads generated during controlled collision events. Experimental procedures used during the tests are described, and selected test results are presented, including experimentally measured dynamic impact loads and associated barge deformations. Comparisons are then presented between experimentally collected data and the current AASHTO barge impact bridge design provisions.