查看更多>>摘要:This research developed a system for visualizing four-dimensional (4-D), real-time transportation data for the major road networks of Washington, D.C., Northern Virginia, and the entire state of Maryland. The effort employed a combination of OpenGL and other modeling techniques to develop a scalable, highly interactive 4-D model using available geographic information system (GIS) and transportation infrastructure data in conjunction with real-time traffic management center data. The prototype system interacts with real-time traffic databases to show animations of real-time traffic data (volume and speed) along with incident data (accident locations, lane closures, responding agencies, etc.). A user can "fly" or "drive" through the region to inspect conditions at an infinite number of angles and distances. The program also allows users to monitor the status of and interact with traffic control devices such as dynamic message signs, closed-circuit television feeds, and traffic sensors and even view the location of emergency response vehicles equipped with Global Positioning System transceivers. Because the system uses standard GIS data and relatively standard transportation databases to derive traffic measures, it can be scaled to incorporate other states and agencies.
查看更多>>摘要:Traditional microscopic traffic simulations visualize simulation results in two dimensions. Visualization in three dimensions provides additional versatility to these simulations and allows the utilization of their results for additional purposes. An approach to visualization of CORSIM simulations in three dimensions with the use of a personal computer-based virtual reality package is presented. The key to this approach is translation of the network geometry and traffic data, which is done by a specially designed middleware program. A practical simulation problem is presented to demonstrate the visualization procedure and its assessment. Potential improvements over the current work are discussed.