首页期刊导航|Journal of polymers and the environment
期刊信息/Journal information
Journal of polymers and the environment
Kluwer Academic/Plenum Publishers
Journal of polymers and the environment

Kluwer Academic/Plenum Publishers

季刊

1566-2543

Journal of polymers and the environment/Journal Journal of polymers and the environmentEISCIISTP
正式出版
收录年代

    Preparation and Properties of Bionanocomposites Based on Aminated Sucrose-Cured Epoxy Resins and Carboxymethyl Cellulose Nanofibers

    Jun WatanabeKaito SuganeMitsuhiro Shibata
    2125-2137页
    查看更多>>摘要:Bionanocomposites composed of bio-based epoxy resins and cellulose nanofibers are attracting extensive attention as sustainable materials contributing to carbon neutrality and reduced dependence on oil resources. In this study, as a water-soluble epoxy resin system, a mixture of bio-based epoxy resin [polyglycerol polyglycidyl ether (PGPE)] and petroleum-based flexible epoxy resin [polyethylene glycol diglycidyl ether (PEGDGE)] at an epoxy ratio of 2:1 was used. As a bio-based and water-soluble epoxy hardener, 3-[(2-aminoethyl)thio]propyl-etherified sucrose (NSCR) with an amine functionality of ca. 7, which was synthesized by the thiol-ene reaction of cysteamine hydrochloride and allyl-etherified sucrose, was used. A bio-based epoxy network (BEN) was prepared by drying and curing an aqueous solution of PGPE, PEGDGE, and NSCR with an epoxy/NH_2 ratio of 1/1. Bionanocomposites of BEN and carboxymethyl cellulose nanofibers (CMCNFs) were successfully prepared by directly mixing PGPE, PEGDGE, NSCR, and CMCNF in water without any solvent-exchange of the cellulosic nanofibers, which is necessary in conventional methods. The BEN/CMCNF bionanocomposites had excellent fiber dispersibility, and the tensile strength and modulus increased with increasing CMCNF content owing to the excellent reinforcement effect of the CMCNFs.

    Preparation and Properties of Bionanocomposites Based on Aminated Sucrose-Cured Epoxy Resins and Carboxymethyl Cellulose Nanofibers

    Jun WatanabeKaito SuganeMitsuhiro Shibata
    2125-2137页
    查看更多>>摘要:Bionanocomposites composed of bio-based epoxy resins and cellulose nanofibers are attracting extensive attention as sustainable materials contributing to carbon neutrality and reduced dependence on oil resources. In this study, as a water-soluble epoxy resin system, a mixture of bio-based epoxy resin [polyglycerol polyglycidyl ether (PGPE)] and petroleum-based flexible epoxy resin [polyethylene glycol diglycidyl ether (PEGDGE)] at an epoxy ratio of 2:1 was used. As a bio-based and water-soluble epoxy hardener, 3-[(2-aminoethyl)thio]propyl-etherified sucrose (NSCR) with an amine functionality of ca. 7, which was synthesized by the thiol-ene reaction of cysteamine hydrochloride and allyl-etherified sucrose, was used. A bio-based epoxy network (BEN) was prepared by drying and curing an aqueous solution of PGPE, PEGDGE, and NSCR with an epoxy/NH_2 ratio of 1/1. Bionanocomposites of BEN and carboxymethyl cellulose nanofibers (CMCNFs) were successfully prepared by directly mixing PGPE, PEGDGE, NSCR, and CMCNF in water without any solvent-exchange of the cellulosic nanofibers, which is necessary in conventional methods. The BEN/CMCNF bionanocomposites had excellent fiber dispersibility, and the tensile strength and modulus increased with increasing CMCNF content owing to the excellent reinforcement effect of the CMCNFs.

    Effect of Polyelectrolyte Properties of Fucoidans on Antimicrobial Activity

    Olga BrovkoIrina PalamarchukNatalia GorshkovaDmitriy Chukhchin...
    2138-2148页
    查看更多>>摘要:Over the years, brown algae have been highlighted as valuable natural sources of bioactive polysaceharides. They are known to consist of a number of bioactive polysaceharides, fucoidan being the principal polysaccharide. Fucoidans, a sulphated polysaccharide composed of a fucopyranose backbone and several monosaccharaides have been reported to possess numerous biological activities such as anticancer, antioxidant, antiviral, antithrombotic, and anti-inflammatory properties, thus may confer health benefits to humans. However, the main mechanisms bridging the structural complexity of fucoidans and their biological activity are mostly unexplored. This study aimed to compare the structural features and the antimicrobial properties of the fucoidan extracts isolated from the two brown macroalgae, Fucus vesiculosus and Sac-charina latissima, sampled in the littoral zone of the Barents Sea. The physicochemical properties of fucoidans and their polyelectrolyte properties were investigated. The antibacterial activity of fucoidans was evaluated using the disc diffusion method against Bacillus subtilis (gram-positive bacteria), Pseudomonas aeruginosa, and Proteus mirabilis (gram-negative bacteria). It was shown that fucoidans inhibited the growth of both gram-positive and gram-negative microorganisms. At the concentration of 0.25-0.5%, the highest clear inhibition zones were observed for all the studied bacteria. The high antibacterial activity of fucoidans was due to the availability of functional groups and the particle sizes of fucoidan molecules that affect the cell membranes of the bacterial microfiora. On the basis of obtaining results, fucoidans were suggested as potential natural and green bactericidal agents to be used by the pharmaceutical, medicine, and food industries.

    Effect of Polyelectrolyte Properties of Fucoidans on Antimicrobial Activity

    Olga BrovkoIrina PalamarchukNatalia GorshkovaDmitriy Chukhchin...
    2138-2148页
    查看更多>>摘要:Over the years, brown algae have been highlighted as valuable natural sources of bioactive polysaceharides. They are known to consist of a number of bioactive polysaceharides, fucoidan being the principal polysaccharide. Fucoidans, a sulphated polysaccharide composed of a fucopyranose backbone and several monosaccharaides have been reported to possess numerous biological activities such as anticancer, antioxidant, antiviral, antithrombotic, and anti-inflammatory properties, thus may confer health benefits to humans. However, the main mechanisms bridging the structural complexity of fucoidans and their biological activity are mostly unexplored. This study aimed to compare the structural features and the antimicrobial properties of the fucoidan extracts isolated from the two brown macroalgae, Fucus vesiculosus and Sac-charina latissima, sampled in the littoral zone of the Barents Sea. The physicochemical properties of fucoidans and their polyelectrolyte properties were investigated. The antibacterial activity of fucoidans was evaluated using the disc diffusion method against Bacillus subtilis (gram-positive bacteria), Pseudomonas aeruginosa, and Proteus mirabilis (gram-negative bacteria). It was shown that fucoidans inhibited the growth of both gram-positive and gram-negative microorganisms. At the concentration of 0.25-0.5%, the highest clear inhibition zones were observed for all the studied bacteria. The high antibacterial activity of fucoidans was due to the availability of functional groups and the particle sizes of fucoidan molecules that affect the cell membranes of the bacterial microfiora. On the basis of obtaining results, fucoidans were suggested as potential natural and green bactericidal agents to be used by the pharmaceutical, medicine, and food industries.

    Foaming Behavior of Radiation-Crosslinked Virgin and Recycled Low- Density Polyethylene

    Zahra Rafiei-SarmazdehMeisamTorab-MostaediMehdi AsadollahzadehRezvanTorkaman...
    2149-2160页
    查看更多>>摘要:The increasing demand for sustainable materials has underscored the importance of utilizing polymer waste in various applications. Despite the growing interest in using polyethylene waste for foam production, concerns regarding the mechanical properties of recycled foams present challenges to their reuse, as these properties are critical for foam performance. The mechanical characteristics of foams are closely linked to their cell structure. This study investigates the foaming behavior of irradiated crosslinked virgin and recycled low-density polyethylene by comparing parameters of foam's cell structure, including foaming degree, cell size distribution, cell density, volume expansion ratio, and foaming rate on a batch scale. Polyethylene foams were produced by melt mixing polyethylene with azodicarbonamide (ADCA) as a blowing agent, followed by irradiation and hot pressing for foaming. The analysis of the produced foams focused on gel content and structural, thermal, and mechanical properties. Results indicate that an absorbed dose of 50 kGy optimizes both virgin and recycled foams, enhancing their expansion and mechanical stability. At this dosage, both types exhibit a closed microcellular structure with a maximum cell density of 105 cells/cm3. The results reveal that while tensile strength decreases with increasing absorbed doses, elongation at break significantly increases. This indicates that recycled polyethylene foams offer enhanced flexibility despite the reduced strength, making them advantageous for applications requiring deformation resistance without failure.

    Foaming Behavior of Radiation-Crosslinked Virgin and Recycled Low- Density Polyethylene

    Zahra Rafiei-SarmazdehMeisamTorab-MostaediMehdi AsadollahzadehRezvanTorkaman...
    2149-2160页
    查看更多>>摘要:The increasing demand for sustainable materials has underscored the importance of utilizing polymer waste in various applications. Despite the growing interest in using polyethylene waste for foam production, concerns regarding the mechanical properties of recycled foams present challenges to their reuse, as these properties are critical for foam performance. The mechanical characteristics of foams are closely linked to their cell structure. This study investigates the foaming behavior of irradiated crosslinked virgin and recycled low-density polyethylene by comparing parameters of foam's cell structure, including foaming degree, cell size distribution, cell density, volume expansion ratio, and foaming rate on a batch scale. Polyethylene foams were produced by melt mixing polyethylene with azodicarbonamide (ADCA) as a blowing agent, followed by irradiation and hot pressing for foaming. The analysis of the produced foams focused on gel content and structural, thermal, and mechanical properties. Results indicate that an absorbed dose of 50 kGy optimizes both virgin and recycled foams, enhancing their expansion and mechanical stability. At this dosage, both types exhibit a closed microcellular structure with a maximum cell density of 105 cells/cm3. The results reveal that while tensile strength decreases with increasing absorbed doses, elongation at break significantly increases. This indicates that recycled polyethylene foams offer enhanced flexibility despite the reduced strength, making them advantageous for applications requiring deformation resistance without failure.

    Toughening Biodegradable Poly(glycolic acid) with Balanced Mechanical Properties by Biobased Poly(butylene 2,5-furanoate)

    Chen PengMingfu LyuPeng GuoZihan Jia...
    2161-2172页
    查看更多>>摘要:Poly(glycolic acid) (PGA) possesses widespread interest due to its outstanding degradability as well as mechanical performance, however, its poor toughness restricts their application. In this work, we synthesized biobased poly(butylene 2,5-furanoate) (PBF), then added a small amount by melt extrusion into PGA to achieve a balance between toughness and mechanical properties of PGA. The incorporation of PBF significantly enhanced the tensile toughness and impact toughness of PGA. Specifically, when the PBF content reached 50 wt.%, the blend exhibited a maximum elongation at break (121.2%), which was 18.9 times higher than that of pure PGA. However, owing to no changes observed in terms of chemical structure, crystal structure, and compatibility before and after blending, it can be concluded that the improvement in material toughness is not attributed to any chemical reactions or compatibility alterations between PBF and PGA. Based on the rheological characterization and morphological analysis of SEM, it has been demonstrated that the shape alteration of PBF serves as the primary mechanism for toughening PGA. Due to the excellent barrier properties of PBF, the addition of PBF makes the barrier properties of the blend better maintained. Thus, this work prepares a sustainable PGA/PBF blend with excellent strength and barrier properties via melt-blending method, which show great potentials in high-barrier application scenarios such as food packaging.

    Toughening Biodegradable Poly(glycolic acid) with Balanced Mechanical Properties by Biobased Poly(butylene 2,5-furanoate)

    Chen PengMingfu LyuPeng GuoZihan Jia...
    2161-2172页
    查看更多>>摘要:Poly(glycolic acid) (PGA) possesses widespread interest due to its outstanding degradability as well as mechanical performance, however, its poor toughness restricts their application. In this work, we synthesized biobased poly(butylene 2,5-furanoate) (PBF), then added a small amount by melt extrusion into PGA to achieve a balance between toughness and mechanical properties of PGA. The incorporation of PBF significantly enhanced the tensile toughness and impact toughness of PGA. Specifically, when the PBF content reached 50 wt.%, the blend exhibited a maximum elongation at break (121.2%), which was 18.9 times higher than that of pure PGA. However, owing to no changes observed in terms of chemical structure, crystal structure, and compatibility before and after blending, it can be concluded that the improvement in material toughness is not attributed to any chemical reactions or compatibility alterations between PBF and PGA. Based on the rheological characterization and morphological analysis of SEM, it has been demonstrated that the shape alteration of PBF serves as the primary mechanism for toughening PGA. Due to the excellent barrier properties of PBF, the addition of PBF makes the barrier properties of the blend better maintained. Thus, this work prepares a sustainable PGA/PBF blend with excellent strength and barrier properties via melt-blending method, which show great potentials in high-barrier application scenarios such as food packaging.

    Enhanced Biological, Thermal and Dielectric Properties of Polyvinyl Alcohol by a Methacrylate Polymer and Green Synthesized Silver Nanoparticles

    Ibrahim ErolOEmer HazmanFadime YilmazGofur Khamidov...
    2173-2192页
    查看更多>>摘要:Due to the increasing adverse environmental effects of synthetic polymers, the need for environmentally friendly alternative biomaterials is increasing daily. In this context, the synthesis of novel Poly(vinyl alcohol) (PVA) -based composite materials was aimed. In this study, methacrylate-based poly(2-oxo-2-[4-(trifluoromethyl)anilino]ethyl-2-methylprop-2-enoate) (PTFMAM) polymer synthesized for the first time was blended with PVA by hydrothermal method. Biosynthesized silver nanoparticles (Ag NPs) were added to the PTFMAM-PVA blend using the hydrothermal method. Nanocomposites were characterized by XRD, SEM, TEM, and FTIR. The thermal stability of nanocomposites was determined by thermogravi-metric analysis (TGA), and glass transition temperatures (Tg) were determined by differential scanning calorimetry (DSC) techniques. According to TGA data, the thermal stability of PVA was improved by blending with PTFMAM and loading with Ag NPs. While the Tg of PVA and PTFMAM-PVA were 78 °C and 103 °C, this value increased to 116 °C with 7% Ag NP loading. The dielectric properties of the nanocomposites also increased with the loading of Ag NPs. Ag NPs loading also decreased the solubility of PVA in water. Combining PVA with PTFMAM and Ag NP increased the oxidant/ antioxidant activity. At the same time, increases in the antimicrobial activities of the nanocomposites were observed. The inhibition zones of the nanocomposites against E. coli, S. aureus, and C. albicans strains were between 8.56 and 15.08 mm. The results showed that PVA equipped with synthetic PTFMAM and biosynthesized Ag NPs caused improvements in thermal, dielectric, and biological properties. The produced PTFMAM-PVA/Ag nanocomposites showed that they could be alternative materials in areas where PVA is frequently used with their improved properties.

    Enhanced Biological, Thermal and Dielectric Properties of Polyvinyl Alcohol by a Methacrylate Polymer and Green Synthesized Silver Nanoparticles

    Ibrahim ErolOEmer HazmanFadime YilmazGofur Khamidov...
    2173-2192页
    查看更多>>摘要:Due to the increasing adverse environmental effects of synthetic polymers, the need for environmentally friendly alternative biomaterials is increasing daily. In this context, the synthesis of novel Poly(vinyl alcohol) (PVA) -based composite materials was aimed. In this study, methacrylate-based poly(2-oxo-2-[4-(trifluoromethyl)anilino]ethyl-2-methylprop-2-enoate) (PTFMAM) polymer synthesized for the first time was blended with PVA by hydrothermal method. Biosynthesized silver nanoparticles (Ag NPs) were added to the PTFMAM-PVA blend using the hydrothermal method. Nanocomposites were characterized by XRD, SEM, TEM, and FTIR. The thermal stability of nanocomposites was determined by thermogravi-metric analysis (TGA), and glass transition temperatures (Tg) were determined by differential scanning calorimetry (DSC) techniques. According to TGA data, the thermal stability of PVA was improved by blending with PTFMAM and loading with Ag NPs. While the Tg of PVA and PTFMAM-PVA were 78 °C and 103 °C, this value increased to 116 °C with 7% Ag NP loading. The dielectric properties of the nanocomposites also increased with the loading of Ag NPs. Ag NPs loading also decreased the solubility of PVA in water. Combining PVA with PTFMAM and Ag NP increased the oxidant/ antioxidant activity. At the same time, increases in the antimicrobial activities of the nanocomposites were observed. The inhibition zones of the nanocomposites against E. coli, S. aureus, and C. albicans strains were between 8.56 and 15.08 mm. The results showed that PVA equipped with synthetic PTFMAM and biosynthesized Ag NPs caused improvements in thermal, dielectric, and biological properties. The produced PTFMAM-PVA/Ag nanocomposites showed that they could be alternative materials in areas where PVA is frequently used with their improved properties.