首页期刊导航|Waste management
期刊信息/Journal information
Waste management
Pergamon Press
Waste management

Pergamon Press

0956-053X

Waste management/Journal Waste managementSCIEI
正式出版
收录年代

    Sustainable use of fly ash waste in tire tread rubber: Characterization of physical properties and environmental impact assessment

    Hassarutai YangthongPapawarin UdomsinSiriwan JansinakSupitta Suethao...
    114737.1-114737.14页
    查看更多>>摘要:This study explores the use of fly ash (FA), a waste material, to partially replace zinc oxide (ZnO) as an activator in tire tread processing. Reducing ZnO addresses its environmental risks, particularly the impact of ZnO leakage into aquatic ecosystems throughout the tire's life cycle. The FA was altered by including rubber compound with and without ZnO, using ZnO-to-FA ratios of 3:0 (control), 2:1,1:2, 0:3, or 0:5 parts per hundred of rubber (phr). The results show that crosslinking of the rubber compound occurred with FA, even in the absence of ZnO. Notably, sample recipes with ZnO-to-FA ratios of 2:1 and 1:2 phr had similar A torque values to the control (3:0), allowing for ZnO reductions of 33.7% and 67.0%, respectively. This effectiveness is likely due to metal oxides in FA, such as CaO, MgO, Al_2O_3, and Fe_2O_3, which support the vulcanization process. Additionally, tensile strength and modulus remained unchanged. Elemental analysis further indicated that a ZnO-to-FA ratio of 1:2 reduced zinc release by 63.0% compared to the control recipe. A gate-to-gate life cycle assessment revealed that replacing ZnO with FA in vulcanized rubber formulations reduces environmental impacts, with the lowest effects observed at the 0:3 ZnO:FA ratio, though higher FA content may increase impacts. Using FA as a partial replacement for ZnO in tire tread processing shows promise for reducing environmental impact in tire manufacturing by lowering zinc release, decreasing ecotoxicity, and promoting waste reduction through the recycling of fly ash.

    Solid waste based manufactured soil - Stabilization of 'organics-microorganisms-inorganic skeleton' and performance evaluation

    Jun ChenQingyi LiJianbo ZhangHao Zhou...
    114738.1-114738.13页
    查看更多>>摘要:The safe disposal and utilization of bulk solid waste (SW) are critical challenges. Manufactured soil, a soil-like material composed of SW, offers a novel solution for resource recycling. However, the mechanisms underlying SW-based manufactured soil fertility development remain unclear. This study systematically investigated the performance of SW-based manufactured soil using aerobic compost sludge (ACS-soil) and anaerobic digestion sludge (ADS-soil), focusing on the microbial mechanism which driving manufactured soil fertility development. Results showed that the soil nutrient index (SNI) of SW-based manufactured soil was 5 to 8 times higher than that of natural topsoil. These soils significantly promoted wheatgrass growth. However, ACS-soil exhibited superior fertility and plant performance, maintaining stable nutrient levels, whereas the SNI value and soil pH of ADS-soil decreased by 27.13% and 17.68% respectively. Microbial community analysis revealed that homogeneous selection in ACS-soil drove microbial community succession, maintaining stable nutrition content and increasing humification degree. In ADS-soil, the rich in labile compounds (accounting for 41%) led to lower environmental stress, stochastic processes dominated bacterial succession, which driving declined pH and thus negatively impact the soil fertility. Furthermore, based on life cycle analysis results, using SW to prepare manufactured soils had lower carbon emissions than conventional disposal methods (including safe landfill, incineration and direct land use), which demonstrated that SW-based manufactured soil is a promising method for SW disposal. This research underscores the potential of SW-based manufactured soil for waste disposal and enhanced plant growth, emphasizing the importance of selecting appropriate organic components to optimize soil performance.

    Modelling anaerobic digestion of agricultural waste: From lab to full scale

    Tatiana SeguraPaul ZanoniUlysse BremondConstance Lucet-Berille...
    114739.1-114739.12页
    查看更多>>摘要:Biogas production through anaerobic digestion offers a promising alternative to address climate change. In this study, the ADM1 model was used to simulate the digestion of four different substrates: a mixture of rye and maize silage, a mixture of cow slurry and maize silage, cow slurry alone, and food waste. Furthermore, the determination of total solids (TS) content was integrated into the model. Based on experimental data from 5 L Continuous Stirred Tank Reactors (CSTR), ADM1 model parameters were calibrated for each substrate, primarily differing in hydrolysis and inhibition constants. These parameters, along with two additional sets of parameters from the literature, were subsequently applied in simulations to assess methane productivity, yield, and TS under increasing organic loading rates (OLR) for each substrate. Among the substrates, food waste showed the highest productivity, yield, and solids removal, while rye and maize silage substrate was the most unstable, with system failure at the lowest OLR (7 kgVS.m~(-3).d~(-1)) compared to the other substrates. In addition, co-digestion of cow slurry and maize silage showed synergies between maize silage and cow slurry, achieving a productivity of 2.62 Nm~3.m~(--3).d ~(-1). Moreover, the parameters determined for rye and maize silage mixture were further used to simulate a full-scale anaerobic digestion unit fed with rye and maize silage as substrate. A difference in volatile fatty acid accumulation was found between the lab- and full-scale systems, suggesting a possible better microbial adaptation to inhibitory factors in the full-scale system. Further investigation into inhibition effects is recommended to improve the predictive accuracy of the ADM1.

    Upcycling textile derived microplastics waste collected from washer and dryers to carbonaceous products using hydrothermal carbonization

    Silvia Parrilla-LahozElena Jimenez-PaezMateus G. MasteghinJoel J. Pawlak...
    114740.1-114740.11页
    查看更多>>摘要:Microplastics are an emerging pollutant of concern. Many microplastics in the waters arise from washing synthetic textiles in residential and commercial washing machines. The present research evaluated the upcycling of this waste to carbon materials by hydrothermal carbonization. Real microfiber waste was collected using clothes washer and dryer microfllters. Via temperature and residence time screening (200 ℃, 250 ℃, 300 ℃ and 1 h, 4 h, 8 h) two temperatures of interest were determined (250 ℃ and 300 ℃) for hydrothermal carbonization, for a residence time of 4 h. The results obtained in this research demonstrated that by varying the reaction conditions carbon production can be tailored, producing amorphous carbon or graphene/graphite. To this end, Raman spectroscopy results indicated the production of carbon nanomaterials; smaller particle sizes were detected after 250 ℃-4h and 300 ℃-4h treatments, (29.6 nm and 33.1 nm, respectively). Transforming microfibers into useful carbon nanoparticles via hydrothermal carbonization prolongs their lifecycle and mitigates environmental pollution. This process is an intriguing method of incorporating textile residue (microfibers) into the circular economy, where resources are perpetually recycled, and waste is avoided.

    Enhancing operational efficiency in a voluntary recycling project through data-driven waste collection optimization

    Sanyapong PetchrompoRasita ChitniyomNaplaifa PeerwantanagulWasakorn Laesanklang...
    114741.1-114741.11页
    查看更多>>摘要:Recycling in developing countries is often driven by voluntary initiatives, typically led by the private sector. While commendable, these efforts face significant challenges, particularly in ensuring operational efficiency due to their non-profit nature. The logistics process involves collecting recyclable plastics from collection points and delivering them to a recycling facility. This aspect is crucial, as it represents the largest cost component, making optimization essential. Traditional approaches, such as the Traveling Salesman Problem and its meta-heuristic variants, are time-consuming for practical applications. To address these challenges, we propose a three-step data-driven approach designed to optimize waste collection within the constraints of non-profit projects. The first step uses K-means clustering to group collection points geographically, reducing the complexity of subsequent optimization stages. The optimization models in the second and third steps aim to maximize the amount of recyclable plastic per trip and determine the most efficient collection route. Real-time data on waste volume at each point and live traffic conditions, retrieved via the Intelligent Traffic Information Center, are integrated into these models, making it possible to achieve a high level of practicality and accuracy. The efficacy of this approach is demonstrated through a case study of the Won Project, involving 152 plastic waste collection points. The results show a significant daily increase in the average amount of plastic collected and reduction in the average distance traveled. The proposed method can produce prompt, reliable solutions for daily operations using open-source software, successfully addressing the challenges of voluntary waste collection projects.

    MedBin: A lightweight End-to-End model-based method for medical waste management

    Xiazhen XuChenyang WangQiufeng YiJiaqi Ye...
    114742.1-114742.10页
    查看更多>>摘要:The surge in medical waste has highlighted the urgent need for cost-effective and advanced management solutions. In this paper, a novel medical waste management approach, "MedBin," is proposed for automated sorting, reusing, and recycling. A comprehensive medical waste dataset, "MedBin-Dataset" is established, comprising 2,119 original images spanning 36 categories, with samples captured in various backgrounds. The lightweight "MedBin-Net" model is introduced to enable detection and instance segmentation of medical waste, enhancing waste recognition capabilities. Experimental results demonstrate the effectiveness of the proposed approach, achieving an average precision of 0.91, recall of 0.97, and F1-score of 0.94 across all categories with just 2.51 M parameters (where M stands for million, i.e., 2.51 million parameters), 5.20G FLOPs (where G stands for billion, i.e., 5.20 billion floating-point operations per second), and 0.60 ms inference time. Additionally, the proposed method includes a World Health Organization (WHO) Guideline-Based Classifier that categorizes detected waste into 5 types, each with a corresponding disposal method, following WHO medical waste classification standards. The proposed method, along with the dedicated dataset, offers a promising solution that supports sustainable medical waste management and other related applications.

    Insights into nutrients recovery from food waste liquid Digestate: A critical review and systematic analysis

    Diana Victoria Arellano-YasacaChen-Yeon Chu
    114743.1-114743.18页
    查看更多>>摘要:This review paper presents a critical analysis of global research on the liquid fraction of food waste (FW) digestate. The study found that research on FW liquid fraction management accounted for 43% of the literature, followed by treatment methods (26%) and physical-chemical characterization (22%). By 2023, China led in scientific production on FW liquid fraction, contributing 46%, followed by Poland with 10% and the USA with 8%. The review emphasizes current technologies for nutrient recovery from the liquid fraction, as well as practical implications and limitations, identifying gaps in the literature. The most used methods for nutrient recovery were biofertilizer production from microalgae and membrane technologies. However, there is a need for further research on nutrient value, circular economy integration, the impact of food additives, ecological problems associated with FW decomposition, pathogen breeding, harmonized legislation to support recovered fertilizer commercialization and innovative nutrient recovery technologies. This approach provides valuable insights for stakeholders, enabling the creation of effective strategies that promote sustainable agricultural practices and circular economy initiatives through nutrient recovery from FW digestate.

    Advanced data augmentation techniques to enhance instance segmentation dataset for construction and demolition waste management

    Birat GautamMehrdad Arashpour
    114744.1-114744.9页
    查看更多>>摘要:Data annotation is a significant bottleneck in compiling instance segmentation datasets, particularly in the context of construction and demolition waste. Data augmentation has been shown to address this issue by increasing the diversity, instances, and complexities of data. While augmentation techniques for detection datasets are well-documented, a comprehensive evaluation of methods to improve the robustness of instance segmentation models is lacking. In this study, we developed and evaluated various data augmentation techniques on a publicly available dataset. Our findings indicate a 6% increase in mask prediction accuracy using the class balance method and a 4% improvement when combining real and synthetic data for training. Additionally, the mask prediction accuracy for minority classes increased by 30% using the augmentation techniques. This study demonstrates practical augmentation techniques to enhance instance segmentation performance with adaptation capability in any instance segmentation dataset within the context of waste management.

    Chelation treatment for heavy metals in municipal solid waste incineration fly ash: 300-Day study on stability and environmental risk

    Ze ZhangYang YuYi RaoYing Wang...
    114745.1-114745.14页
    查看更多>>摘要:Landfilling after chelation is the primary method for treating municipal solid waste incineration fly ash (MSWI FA), but the long-term environmental risks of its heavy metals (HMs) remain unclear. This study used three common organic chelating agents (CAs) to stabilize MSWI FA and assessed its 300-day stability under mixed and zoned landfill scenarios. The findings showed that Pb leaching posed high environmental risks, especially in zoned landfills, with 10-year cumulative leaching of 300 mgAg, while Cu and Zn leaching remained within limits, indicating lower environmental risks. In mixed landfills, 1.6 %-TS-300, 1.6 %-SDD, and 2.4 %-DP maintained HM leaching within landfill limits but exceeded them after 220, 30, and 60 days, respectively. In contrast, when zoned landfilling, the effective time of the chelated products was significantly shortened. Under landfill requirements, chelate effectiveness was significantly shorter, with TS-300, SDD, and DP stabilizing HMs for only 30, 18, and 10 days. The study found that CAs not only form organic complexes with HMs but also precipitates (e.g., CuS) in MSWI FA, reducing leaching. Furthermore, TS-300 can convert Pb from unstable Pb~(4+) to stable Pb~(2+) form, enhancing its long-term stability. In summary, CAs mitigate environmental risks of MSWI FA, but HMs leaching increase over time, especially in zoned landfills. It is advised to apply a waterproof cover to chelated MSWI FA during landfilling to mitigate environmental risks.

    Competitive adsorption and diffusion of methane and vapor-phase per- and polyfluoroalkyl substances in montmorillonite nano pores: Environmental implications

    Rui XuQiao WangFusheng ZhaJiawei Wu...
    114746.1-114746.11页
    查看更多>>摘要:Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bio-accumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm~3 that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.