首页期刊导航|材料科学技术(英文版)
期刊信息/Journal information
材料科学技术(英文版)
材料科学技术(英文版)

胡壮麟

月刊

1005-0302

jmst@imr.ac.cn

024-83978208

110016

沈阳市沈河区文化路72号

材料科学技术(英文版)/Journal Journal of Materials Science & TechnologyCSCDCSTPCD北大核心EISCI
查看更多>>本刊简称《JMST》,(ISSN 1005-0302,CN 21-1315/TG)。1985年创刊。是中国科协主管,中国金属学会,中国材料研究学会和中国科学院金属研究所联合主办的国际性英文期刊,以“加强国际交流,扩大学术影响,服务经济建设”为办刊宗旨,刊登世界各国的具有创新性和较高学术水平的原始性论文,并设有物约综述、快报、简讯及国内外材料界杰出学者简介等栏目,内容包括金属材料、无机非金属材料、复合材料及有机高分子材料等。
正式出版
收录年代

    Plasticity and rejuvenation of aged metallic glasses by ultrasonic vibrations

    Zhe ChenShuai RenRui ZhaoJian Zhu...
    231-239页
    查看更多>>摘要:Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming of long-term aged MGs.Here,we report ultrasonic vibration(UV)loading can lead to large plas-ticity and strong rejuvenation in significantly aged MGs within 1 s.A large UV-induced plasticity(UVIP)of 80%height reduction can be achieved in LaNiAl MG samples aged at 85%of its glass transition tem-perature(0.85Tg)for a duration of up to 1 month.The energy threshold required for UVIP monotonously increases with aging time.After the UV loading process,the aged samples show strong rejuvenation,with the relaxation enthalpy even surpassing that of as-cast samples.These findings suggest that UV loading is an effective technique for forming and rejuvenating aged MGs simultaneously,providing an alterna-tive avenue to explore the interplay between the property and microstructures as well as expanding the application prospects of MGs.

    The anisotropic grain size effect on the mechanical response of polycrystals:The role of columnar grain morphology in additively manufactured metals

    S.Amir H.MotamanDilay Kibaroglu
    240-256页
    查看更多>>摘要:Additively manufactured(AM)metals exhibit highly complex microstructures,particularly in terms of grain morphology which typically features heterogeneous grain size distribution,irregular and anisotropic grain shapes,and the so-called columnar grains.The conventional morphological descriptors based on grain shape idealization are generally inadequate for representing complex and anisotropic grain mor-phology of AM microstructures.The primary aspect of microstructural grain morphology is the state of grain boundary spacing or grain size whose effect on the mechanical response is known to be cru-cial.In this paper,we formally introduce the notion of axial grain size from which we derive mean axial grain size,effective grain size,and grain size anisotropy as robust morphological descriptors ca-pable of effectively representing highly complex grain morphologies.We instantiated a discrete sample of polycrystalline aggregate as a representative volume element(RVE)featuring random crystallographic orientation and misorientation distributions.However,the instantiated RVE incorporates the typical mor-phological features of AM microstructures including distinctive grain size heterogeneity and anisotropic grain size owing to its pronounced columnar grain morphology.We ensured that any anisotropy ob-served in the macroscopic mechanical response of the instantiated sample primarily originates from its underlying anisotropic grain size.The RVE was then employed for mesoscale full-field crystal plasticity simulations corresponding to uniaxial tensile deformation along various axes via a spectral solver and a physics-based crystal plasticity constitutive model which was developed,calibrated,and validated in ear-lier studies.Through the numerical analyses,we isolated the contribution of anisotropic grain size to the anisotropy in the mechanical response of polycrystalline aggregates,particularly those with the charac-teristic complex grain morphology of AM metals.This contribution can be described by an inverse square relation.

    Instructions & Forms for Authors

    封3页