首页期刊导航|催化学报
期刊信息/Journal information
催化学报
催化学报

林励吾

月刊

0253-9837

sales_journal@mail.sciencep.com

0411-84379240

116023

辽宁省大连市中山路457号(大连110信箱)

催化学报/Journal Chinese Journal of CatalysisCSCD北大核心CSTPCDEISCI
查看更多>>本刊主要刊登催化领域有创造性,立论科学、正确、充分,有较高学术价值的论文,反映我国催化学科的学术水平和发展方向,报道催化学科的科研成果与科研进展;跟踪学科发展前沿,注重理论与应用相结合,促进国内外学术交流与合作。内容主要包括多相催化、均相络合催化、生物催化、光催化、电催化、表面化学、催化动力学以及有关边缘学科的理论和应用的研究成果。本刊以催化学术领域从事基础研究和应用开发的科研人员及工程技术人员为读者对象,也可供大专院校有关催化专业的本科生及研究生参考。
正式出版
收录年代

    分子筛限域单位点钴体系催化芳香族化合物C-H键自调节高效氧化

    党健李玮杰秦斌柴玉超...
    133-142页
    查看更多>>摘要:通过芳香族化合物的碳-氢键活化与选择氧化,可以将廉价芳香烃类原料转化为高附加值含氧产品,因此,该反应在基础研究和工业生产中均受到广泛关注.传统的苯乙酮生产工艺存在毒性底物使用、催化剂回收困难、反应条件苛刻以及产物收率低等问题.通过大量的研究探索,科研人员进一步改进其生产工艺,利用环烷酸钴作为均相催化剂,实现了无溶剂条件下分子氧直接选择氧化乙苯生成苯乙酮.相比均相催化,多相催化在催化剂回收和产物分离方面具有优势,更适合工业化生产.因此,开发用于乙苯选择氧化制苯乙酮的高效稳定多相催化体系非常重要,但具有较大挑战.本文采用原位配体保护的水热合成法将钴配合物(钴-二乙烯三胺)封装在Y型分子筛中,并经进一步焙烧去除配体成功制得Co@Y分子筛催化剂.在无溶剂、无添加剂的条件下,单位点Co作为Co@Y分子筛催化剂的活性位点可催化乙苯选择氧化生成苯乙酮.X射线粉末衍射、透射电镜、紫外可见光吸收光谱和固体核磁共振谱等结果表明,该单位点Co(Co2+)通过与骨架氧原子作用稳定限域在Y型分子筛中.为明确Co@Y分子筛催化剂中单位点Co在乙苯氧化反应中所起的重要作用,本文还对比了不同后合成方法所制备的Y分子筛(Co/Y,Co-Y)催化剂及工业环烷酸钴催化剂的催化性能.结果表明,在相同反应条件下,Co@Y分子筛催化剂表现出最高的催化性能,也说明在乙苯氧化反应过程中Co@Y分子筛催化剂的单位点Co有别于上述其他催化剂的活性位点.此外,在Co@Y催化剂热过滤实验中未检测出Co物种浸出,表明Co@Y分子筛催化乙苯氧化反应为多相催化过程,并且在多次循环测试后,Co@Y催化剂结构和反应活性均未发生明显变化.这两项实验均表明Co)@Y催化剂具有高稳定性.值得注意的是,在乙苯氧化反应过程中观察到自加速现象,为此进行了对比实验(添加苯甲醛或1-苯乙醇的对比实验)和反应动力学分析.结果表明,痕量苯甲醛或1-苯乙醇的加入会显著改变Co@Y催化剂在乙苯氧化反应中的催化行为,痕量苯甲醛的加入可将反应表观活化能从69.7降至53.7 kJ/mol.本文也通过第一性原理密度泛函理论(DFT)计算系统研究了 Co@Y分子筛催化剂单位点Co处乙苯选择氧化反应机理及反应过程中自加速现象产生的原因.DFT计算结果结合上述对比实验和反应动力学分析结果表明,加入痕量苯甲醛或者1-苯乙醇后部分乙苯会直接氧化生成苯乙酮,而非通过乙苯→1-苯乙醇→苯乙酮的途径生成苯乙酮.DFT计算结果也阐明反应过程中自加速现象的产生源于单位点Co处活性氧物种(O*)的生成.该活性氧物种在乙苯、苯甲醛和1-苯乙醇的氧化途径中均能自发生成,并且该物种类似"引发剂"促使后续更多链式反应的发生,在乙苯氧化反应过程中具有非常重要的作用.综上所述,本文为理解芳香族化合物碳-氢键选择氧化实验现象与催化作用机制提供了有益见解,可为理性设计开发更高效的催化剂提供新思路.

    碳-氢键活化多相催化Co@Y分子筛催化剂自加速活性氧物种

    空心球状共价有机框架负载金纳米粒子用于光催化生产过氧化氢

    张勇邱俊逸朱必成孙国太...
    143-153页
    查看更多>>摘要:过氧化氢是一种高效的绿色氧化剂,广泛应用于纸浆漂白、外科消毒、废水处理和化学合成等领域.目前,过氧化氢的工业生产仍依赖于传统的蒽醌氧化法,该方法存在能耗高、污染大以及工艺复杂等问题.以太阳能为驱动力,水和氧气作为原料,利用半导体材料光催化生产过氧化氢被认为是一种清洁、安全、经济和节能的技术.该技术的关键是开发高效稳定的半导体光催化材料.共价有机框架(COF)是一种可用于光催化产过氧化氢的新型晶态多孔有机材料,具有结构可调控、密度低、比表面积大、热稳定性和化学稳定性高等优点,但其应用受到光生载流子快速复合的限制.将助催化剂金纳米粒子负载在COF表面,可以有效促进光生载流子的迁移与分离,从而获得较好的光催化产双氧水性能.然而,这方面的研究尚未受到较多的关注.本文采用NaBH4还原法将金纳米粒子原位负载在一种空心球状COF(TB-COF)的表面,制得了不同Au含量的Au/TB-COF复合物(记为AT-x,其中x代表复合物中Au的质量百分含量),并系统研究了该材料光催化生产过氧化氢的性能.粉末X射线衍射(XRD)、透射电子显微镜(TEM)和傅里叶转换红外光谱(FT-IR)等表征结果证明了Au/TB-COF复合物的成功制备,且发现原位负载的金纳米粒子并没有改变TB-COF的晶型、形貌和化学结构.在光催化反应中,以乙醇作为牺牲剂时,复合物AT-1的性能最佳,表现出最高的过氧化氢生成速率常数(Kr)和最低的过氧化氢分解速率常数(Kd),在可见光照射下过氧化氢生成速率达到6067 μmol g-1 h-1,超过大多文献报道的COF基光催化剂性能.经4次光催化循环反应后,AT-1催化生成过氧化氢的产率略有下降,且FTIR谱、XRD谱和FESEM显示光催化反应前后AT-1的结构和形态几乎没有变化,表明其具有较好的光催化稳定性.此外,在本实验所制得的AT-x复合物中,AT-1具有最短的荧光平均寿命、最大的光电流响应和最小的阻抗,表明其具有最高的光生载流子迁移和分离能力.原位辐照X射线光电子能谱结果表明,界面电子在光照前后均从TB-COF转移到金纳米粒子,与密度泛函理论计算结果一致.电子顺磁共振和原位漫反射傅里叶变换红外光谱等实验证实了光催化过程中超氧自由基的存在,这表明AT-1光催化生产过氧化氢是连续两步单电子氧气还原的过程.实验还发现,当O2被N2替代时,几乎检测不到过氧化氢的产生,说明过氧化氢来源于O2的还原反应.当用硝酸银和对苯醌分别作为捕获剂来消除·O2-和e-时,光催化过氧化氢的产率显著下降,可推断·O2-和e-是产生过氧化氢的关键物种.综上,本文详细研究了金纳米粒子作为助催化剂对COF光催化生成过氧化氢性能的促进作用,可为设计高效光催化生成过氧化氢的COF基催化剂提供参考.目前,光催化生产过氧化氢技术仍处于起步阶段,其产率仍处于mmol g-1 h-1的水平,尚不能达到工业生产要求.开发高效的半导体催化剂是实现高效光催化生产过氧化氢的关键.未来还需要进一步提高光催化产过氧化氢的生成效率和选择性,解决O2的有效吸附、可见光有效利用、光生载流子的分离与转移效率等问题,以推进光催化产过氧化氢技术的工业生产和商业应用.

    共价有机框架金纳米粒子光催化双氧水生产氧气还原

    可控构建Co3S4@CoMoS核@壳材料用于氢溢流促进的高效加氢脱硫

    鲍文静冯超马书妍闫登伟...
    154-170页
    查看更多>>摘要:过去几十年,通过催化加氢脱硫(HDS)实现超清洁油品的生产一直是石油炼制领域的研究重点.然而,常规的HDS催化剂因金属负载量较低及金属与载体之间的强相互作用,导致其对4,6-二甲基二苯并噻吩(4,6-DMDBT)类大分子的脱除效率较低.这类大分子反应物由于具有较大的空间位阻,使得其在催化剂表面活性位点上的吸附和反应更为困难,往往通过氢化反应进行脱硫反应.因此,为实现有效的脱硫反应,必须发展能高效解离和活化氢物种的催化剂.此外,通过氢化反应高效地脱除4,6-DMDBT通常需要在高温高压等苛刻条件下进行,这要求催化剂具备更高的活性、选择性和稳定性.为解决上述问题,本文通过奥斯瓦尔德熟化法制备了一种由多孔CoMoS外壳和Co3S4内核构成的Co3S4@CoMoS核@壳材料,并用于4,6-DMDBT类大分子的脱除.同时,通过原位表征和理论计算研究了该催化材料在HDS反应中的构效关系.SEM结果显示,制得的Co3S4@CoMoS空心球外表面粗糙,由许多小纳米颗粒组成.TEM图像直观地显示了Co3S4@CoMoS催化剂的结构,其外壳和间隙厚度分别为80和100 nm,高度多孔的球体使核@壳材料能够提供较短的氢溢流距离,从而构建了一种高效的HDS纳米反应器.EDX结果显示Co,Mo和S元素在Co3S4@CoMoS催化剂上均匀分布.其中,Mo金属仅存在于纳米球的外壳上;除外层的CoMoS相外,Co元素还形成了一个由Co-S物种组成的独立核心.结合XRD结果可以确定,该催化剂是由Co促进的MoS2外壳和Co3S4内核组成的Co3S4@CoMoS核@壳材料.电镜图像和氮气吸脱附等结果表明,Co3S4@CoMoS纳米球的外壳由(Co)MoS2纳米片交错卷曲组装而成,壳层含有丰富的活性位点和发达的孔道结构,为反应物提供了充足的吸附位点.Co金属的掺杂增加了MoS2晶体的无序度,使得MoS2纳米片上形成了大量的不饱和硫空位.钴原子锚定在MoS2边缘还可以抑制MoS2纳米片的团聚,使得Co3S4@CoMoS催化剂上的层状MoS2长度较短且堆叠层数较低,有利于活性位点的充分暴露.H2-程序升温脱附和WO3变色实验结果证实了Co3S4@CoMoS结构中的氢溢流效应.HDS实验结果表明,仅使用30 mg Co3S4@CoMoS催化剂就能够实现99.2%的二苯并噻吩转化率和94.9%的4,6-DMDBT转化率.推测在HDS反应中,含硫大分子锚定在CoMoS外壳的硫空位上,而内核Co3S4相能够引发氢溢流效应,并将活性氢物种传递给CoMoS相,用于吸附和脱除含硫反应物,从而在HDS反应中使CoMoS和Co3S4两相起到协同作用,进而实现针对4,6-DMDBT类大分子的深度加氢脱硫.同时,反应过程中小分子H2则可以自由地通过壳体扩散到内核的Co3S4相上,被解离成溢流氢物种后又传递给外层壳体,使得硫空位在HDS中不断地形成和再生.此外,核@壳球体内部连续的介孔通道缩短了溢流氢物种的迁移距离,提高了活性物种的利用率.致密的壳体使催化剂在多次循环反应中保留了核@壳结构,提高了催化剂的使用寿命.理论计算结果表明,CoMoS相和Co3S4相间的强电荷转移增加了CoMoS相中硫原子的电子云密度,有利于反应物在活性物种上的吸附.此外,得益于Co3S4相的氢溢流效应,在CoMoS/Co3S4双相结构上的氢解离能远低于单相结构,这使得H2分子能够在核@壳催化剂上被快速活化,以促进反应物分子的下一步脱硫进程.综上所述,本文制备的多组分Co3S4@CoMoS核@壳催化剂表现出较好的加氢脱硫性能.文章还提出了活性相结构与催化活性及反应路径选择性之间的作用机制,为进一步开发高效非负载加氢脱硫催化剂提供了新思路.

    加氢脱硫氢溢流效应核@壳结构CoMoS活性相双活性相协同

    苝二酰亚胺共价有机框架超级还原剂用于高效光催化芳基卤化物还原反应

    金昱丞刘小琳曲琛李长骏...
    171-183页
    查看更多>>摘要:自由基离子型分子光催化剂被证实是具有很强还原能力的可见光超级还原剂,它们在促进惰性的有机反应(例如将芳基卤化物还原为芳基自由基)方面具有突出的催化能力.然而,由于分子聚集严重地降低其催化活性,因而针对非均相超级还原剂的研究较少.本文提出了一种新的方法来解决上述问题,通过溶剂热反应将具有连续光诱导电子转移机制的苝二亚胺超级还原剂(PDI)异质化为二维给体-受体(D-A)共价有机框架(COFs).即以N,N'-双(3-戊基)-2,5,8,11-四(4-甲酰基苯基)花二酰亚胺(TFPDI)与1,3,6,8-四(4-氨基苯基)芘\(Py-TA)或2,3,6,7-四(4-氨基基苯基)四硫富瓦烯(TTF-TA)为原料,通过溶剂热反应分别制备了两种高晶态二维D-A型COF结构:USTB-21和USTB-22,并用于芳基氯化物、芳基溴化物和芳基碘化物的光催化还原反应.X射线衍射和理论模拟结果表明,USTB-21和USTB-22具有二维共价键连接的层状结构,分别呈现AA和AB的堆积方式.在各自最佳反应条件下,COFs显示出与均相催化剂相媲美的可见光催化性能,可高效地还原一系列芳基氯化物、芳基溴化物和芳基碘化物.其中,USTB-22在可见光驱动不同的芳香卤化物还原时,3 h内的转化率高达99%.瞬态吸收光谱结果表明,相比于均相催化剂(N,N'-双(2,6-二异丙基苯基)苝二酰亚胺),自由基阴离子激发态寿命是150 ps,USTB-21和USTB-22具有更长的激发态寿命,分别为210和260 ps.顺磁共振波谱测试结果证明,自由基阴离子光催化剂异质化成晶态D-A型COFs能够有效地促进电荷分离效率和延长激发态寿命.上述结果说明,USTB-22具有良好的光催化性能主要是因为其激发态寿命较长以及电荷分离效率较好.理论模拟结果表明,所制备的材料具有D-A型的电子结构.对COF的模型片段进行理论计算,揭示了各步反应路径中吉布斯自由能的变化,从而进一步阐明了光催化机理.在催化反应过程中,芳基卤化物还原途径可分为两个阶段:第一阶段为双光子能量输入和光驱电子转移,包括光子捕获和(TTF-PDI·-)*产生以及光驱动电子转移到4-溴苯乙酮底物;第二阶段为能量输出,用于还原4-溴苯乙酮底物生成苯乙酮.综上所述,本文通过溶剂热反应将具有连续光诱导电子转移机制的苝二亚胺超级还原剂异质化为二维D-A型COFs结构.该结构在芳基氯化物、芳基溴化物和芳基碘化物等的光催化还原反应中,可很好地促进电子从光催化剂转移到反应物,进而显著提高光催化反应的活性和选择性;本研究对于未来设计新型自由基离子型高效光催化剂提供了新的思路.

    苝酰亚胺共价有机骨架光催化剂均相芳基卤化物的还原