查看更多>>摘要:Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribu-tion to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the sub-national level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
查看更多>>摘要:The study explores the intricate interplay between land use land cover(LULC),normalized difference vegetation index(NDVI),and land surface temperature(LST)within the Lower Son River Basin in India from 1991 to 2020.The region's ecological balance has been increasingly strained due to rapid urbanization and changing land use patterns.Through a combination of Landsat TM & OLI/TIRS satellite imageries and geospatial analysis techniques,this study unveils the intricate connection between land use and land cover changes,vegetation,and land surface temperature variations.The study area is classified into three altitudinal zones(Zone I:39-300 m,Zone Ⅱ:301-600 m and Zone Ⅲ:601-1,247 m)to examine the changes in depth.The area has seen significant changes in LULC,vegetation and LST in all the three altitudinal zones.The findings hold significant implications for sustainable land management and environmental conservation strategies in the Lower Son River Basin.As per the result,103,438 ha of vegetation was converted into agriculture land and 82,572 ha of agricultural land was transformed into settlements from 1991 to 2020.This trend shows human pressure on the land resource in the study area.Minor increase in water body is seen which is attributed to commissioning of Bansagar dam.Zone Ⅰhas seen highest settlement growth while Zone Ⅲ experienced severe deforestation of around 15%.Zone Ⅱ andⅢ needs attention for holistic sustenance.Analysis of LST shows that it has increased by 0.82 ℃ from 1991 to 2020 which is a red flag.The study underscores the critical importance of balanced land use practices to preserve ecological integrity and mitigate the adverse effects of urbanization and climate change.
查看更多>>摘要:In the pursuit of sustainable urbanization,Bike-Sharing Services(BSS)emerge as a pivotal instrument for pro-moting green,low-carbon transit.While BSS is often commended for its environmental benefits,we offer a more nuanced analysis that elucidates previously neglected aspects.Through the Dominant Travel Distance Model(DTDM),we evaluate the potential of BSS to replace other transportation modes for specific journey based on travel distance.Utilizing multiscale geographically weighted regression(MGWR),we illuminate the relationship between BSS's environmental benefits and built-environment attributes.The life cycle analysis(LCA)quantifies greenhouse gas(GHG)emissions from production to operation,providing a deeper understanding of BSS's envi-ronmental benefits.Notably,our study focuses on Xiamen Island,a Chinese"Type Ⅱ large-sized city"(1-3 million population),contrasting with the predominantly studied"super large-sized cities"(over 10 million population).Our findings highlight:(1)A single BSS trip in Xiamen Island reduces GHG emissions by an average of 19.97 g CO2-eq,accumulating monthly savings of 144.477t CO2-eq.(2)Areas in the southwest,northeast,and southeast of Xiamen Island,characterized by high population densities,register significant BSS environmental benefits.(3)At a global level,the stepwise regression model identifies five key built environment factors influencing BSS's GHG mitigation.(4)Regionally,MGWR enhances model precision,indicating that these five factors function at diverse spatial scales,affecting BSS's environmental benefits variably.
查看更多>>摘要:China's Grain to Green Program(GTGP),which is one of the largest payments for ecosystem services(PES)in the world,has made significant ecological improvements to the environment.However,current understanding of its outcomes on the social-ecological system(SES)remains limited.Therefore,taking the South China Karst as an example,a SES resilience evaluation index system was constructed followed by an exploratory spatial analysis,root mean square error,and Self-Organizing Feature Map to clarify the spatiotemporal changes and relationship of SES resilience,achieve the zoning of SES resilience and provide restoration measures.The results showed an upward trend in social resilience from 2000 to 2020,especially its subsystem of social development.Regional ecological resilience was stable,owing to a slightly declined ecosystem services and increased landscape pattern.Spatially,nearly half of the counties exhibited a distribution mismatch in SES resilience.There was an obvious inverted U-shaped relationship of SES resilience,indicating a clear threshold effect,and the constraint relation-ship of SES resilience eased over time,demonstrating the effectiveness of the ecological restoration program.GTGP played a positive role in reducing regional SES trade-off,but this positive effect was limited,reflecting the limitations of overemphasizing the conversion from farmland to forest and grassland.Regional SES resilience can be divided into four clusters,which were the key optimization zone for social system,the SES resilience safety zone,the key restoration zone for SES resilience,and the key optimization zone for ecological system.Adaptive adjustments for the GTGP in these zones should be taken to achieve maximum SES benefits in the future.
Luís Valen?a PintoCarla Sofia Santos FerreiraPaulo Pereira
302-317页
查看更多>>摘要:Urban green spaces(UGS)are relevant to city well-being,as recognized by the United Nations'Sustainable De-velopment Goals(SDGs).However,few studies have studied the temporal use of UGS.This work assessed the seasonal,weekly,and daily use of three urban green spaces(Vingis Park,Bernardino Garden,and Jomantas Park)in Vilnius(Lithuania).The study is based on an on-site observation-based survey,which recorded users'characteristics,activities,and weather conditions during summer and winter.The results showed that UGS's sea-sonal,weekly,and daily use differed according to park and users'characteristics.Parks with a higher diversity of facilities had a high seasonal difference in the number of observed activities.User numbers were higher in the summer for activities with children,social activities,sports,and water activities than in the winter.Jomantas Park had the lowest variability in user characteristics.Weather variables were linked to changes in users'activ-ities.Higher precipitation and lower temperature were associated with reducing the number of users and the diversity of registered activities.Most of the stationary activities were observed during summer.The diversity of the observed activities was associated with the available facilities rather than the park size.The distribution of stationary activities was spatially correlated with facility/equipment(benches,playgrounds,sports,and fitness equipment)and proximity to water features.The results of this study are relevant for UGS design,planning,and management.