首页期刊导航|电子学报
期刊信息/Journal information
电子学报
中国电子学会
电子学报

中国电子学会

王守觉

月刊

0372-2112

new@ejournal.org.cn;wanghui@ejournal.net.cn

010-68279116,68285082

100036

北京165信箱

电子学报/Journal Acta Electronica SinicaCSCD北大核心CSTPCDEI
查看更多>>1962年创刊,中国电子学会主办的高级学术月刊。刊登电子与信息及相关领域代表我国研究水平的最新科研成果和技术进展。本刊为中国自然科学核心期刊之一;科技部科技论文统计源期刊;中国科学引文数据库来源期刊。获2000年首届国家期刊奖以及2000年国家自然科学基金重点学术期刊专项基金资助。现被五个大型检索机构(Ei、Sci-Expanded、SA、苏联文摘杂志(рж)和日本科技文献速报)作为固定收录对象。
正式出版
收录年代

    广义确定性标识网络

    杨冬程宗荣田伟康王洪超...
    1-18页
    查看更多>>摘要:随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如,在算网融合场景,智算任务要求同时保障传输与计算要素的确定性来实现高性能通信;在绿色通信场景,需要考虑节点能量要素的确定性以维持网络稳定运行.针对上述需求,本文基于前期提出的标识网络技术,研究面向传输、计算、存储、能量等多要素的广义确定性网络.首先提出广义确定性标识网络架构,包括差异化服务层、异构融合网络层和智慧化适配层.差异化服务层和异构融合网络层,分别实现差异化确定性应用需求和异构化确定性网络要素的统一标识和描述,并通过标识解析映射实现确定性信息向智慧化适配层的统一封装和传递;智慧化适配层完成差异化确定性应用需求和异构化确定性网络要素的适配.现有确定性资源适配方法,即使仅考虑单一网络内的基本确定性要素,仍面临计算时间长、求解复杂性高、灵活度低等问题,为了支持更加复杂的多确定性要素、多种异构网络的协同适配,设计了基于深度强化学习的端到端的确定性调度(End-to-end Deterministic resource scheduling,E2eDet)算法,该算法可统一化、端到端地为混合数据流协同分配多种确定性网络资源,满足不同应用的差异化确定性需求.实验表明,E2eDet比DeepCQF和Random算法分别提升了28.4%和6.38倍数据流调度数量,同时E2eDet可以较好地权衡计算时间和调度能力.

    广义确定性网络完备标识空间网络体系架构深度强化学习网络资源调度

    云际分布记账模型、机理与关键技术展望

    史佩昌王怀民傅翔
    19-33页
    查看更多>>摘要:云际计算是支持公有云、私有云、边缘云和微云等异源异质云服务以自主对等方式纵横协作共赢的新型计算模式,可为独立云服务实体间行为交互、信任构建和贡献度量等提供防篡改、可追溯能力支持,进而最大限度削弱阻碍不同利益攸关者协作的不确定性因素.提升云际协作意愿和效率需要基于何种机理进行何种机制创新,是云际计算成长演化中需要进一步阐述的新问题.本文首先以基于"数字空间证据"构建或增强信任关系为设计原则,提出了基于区块链的云际分布记账软件定义模型,并系统阐述了分布记账支撑云际服务独立性、可审计性以及释放云际协作潜能的内在机理;其次,面向云际复杂交互行为,深化并固化了云际分布记账运行逻辑流程及关键环节的设计,避免其在错综复杂要素综合作用下呈现不确定冲突和矛盾;再次,针对数据要素流通及复杂异步交互场景,细化并优化了云际分布记账合约逻辑模型;最后,论述了以分布共识、智能合约等为代表的云际分布记账核心技术及相应指标的现状,并对关键技术的目标属性体系、前瞻性挑战等进行了展望.

    云际计算区块链分布记账分布共识智能合约

    基于任务解耦的低照度图像增强方法

    牛玉贞陈铭铭李悦洲赵铁松...
    34-45页
    查看更多>>摘要:低照度条件下拍摄的照片往往存在亮度低、颜色失真、噪声高、细节退化等多重耦合问题,因此低照度图像增强是一个具有挑战性的任务.现有基于深度学习的低照度图像增强方法通常聚焦于对亮度和色彩的提升,导致增强图像中仍然存在噪声等缺陷.针对上述问题,本文提出了一种基于任务解耦的低照度图像增强方法,根据低照度图像增强任务对高层和低层特征的不同需求,将该任务解耦为亮度与色彩增强和细节重构两组任务,进而构建双分支低照度图像增强网络模型(Two-Branch Low-light Image Enhancement Network,TBLIEN).其中,亮度与色彩增强分支采用带全局特征的U-Net结构,提取深层语义信息改善亮度与色彩;细节重构分支采用保持原始分辨率的全卷积网络实现细节复原和噪声去除.此外,在细节重构分支中,本文提出一种半双重注意力残差模块,能在保留上下文特征的同时通过空间和通道注意力强化特征,从而实现更精细的细节重构.在合成和真实数据集上的广泛实验表明,本文模型的性能超越了当前先进的低照度图像增强方法,并具有更好的泛化能力,且可适用于水下图像增强等其他图像增强任务.

    低照度图像增强任务解耦双分支网络模型对比学习残差网络

    ConvFormer:基于Transformer的视觉主干网络

    胡杰昌敏杰徐博远徐文才...
    46-57页
    查看更多>>摘要:针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvForm‑er.ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.

    机器视觉自注意力主干网络Transformer

    双通道深度图像先验降噪模型

    徐少平肖楠罗洁程晓慧...
    58-68页
    查看更多>>摘要:相对于采用固定网络参数值的有监督深度降噪模型而言,无监督的深度图像先验(Deep Image Prior,DIP)降噪模型更具灵活性和实用性.然而,DIP模型的降噪效果远低于有监督降噪模型(尤其是在处理人工合成噪声图像时).为进一步提升DIP降噪模型的降噪效果,本文提出了双通道深度图像先验降噪模型.该降噪模型由噪声图像预处理、在线迭代训练和图像融合3个模块组成.首先,利用BM3D和FFDNet两种经典降噪方法对给定的噪声图像进行预处理,得到2张初步降噪图像,然后,将原DIP单通道逼近目标图像架构拓展为双通道工作模式.其中,第一通道以FFDNet初步降噪图像和噪声图像为双目标图像,第二通道则以BM3D预处理图像和噪声图像为双目标图像.在此基础上,按照标准的DIP在线训练方式让DIP网络输出图像在两个通道上分别逼近各自的目标图像,同时依据基于边缘能量定义的伪有参考图像质量评价值适时终止迭代过程,从而获得2张中间生成图像.最后,使用结构化图块分解融合算法将两张中间生成图像融合并作为最终的降噪后图像.实验数据表明,在合成噪声图像上,本文提出的双通道深度图像先验降噪模型在各个噪声水平上显著优于原DIP及其他无监督降噪模型(提升了约2.2 dB),甚至逼近和超过了新近提出的主流有监督降噪模型,这充分表明了本文提出的改进策略的有效性;在真实噪声图像上,本文提出的降噪模型优于排名第二的对比降噪方法约2 dB,展现出其在实际应用场景下独有的优势.

    深度图像先验双通道逼近策略预处理图像自动迭代终止图像质量评价图像融合

    时间反转直扩通信系统及性能分析

    雷维嘉邹梦婷雷宏江唐宏...
    69-80页
    查看更多>>摘要:时间反转传输技术的空时聚焦特性能够有效地提升通信系统的性能.本文设计了一种将时间反转技术应用于直扩通信系统的方案,并对多径衰落信道下单用户和多用户系统的接收信干噪比、系统容量、误比特率等性能进行了理论分析与仿真验证.理论与仿真结果表明,通过时间反转预处理,直扩通信系统的性能得到了改善,且优于复杂度较高的多通道Rake接收的系统,且多径数目越多,优势越明显.

    直接序列扩频时间反转Rake接收机系统容量误比特率

    一种基于SAM-MSFF网络的低照度目标检测方法

    江泽涛李慧雷晓春朱玲红...
    81-93页
    查看更多>>摘要:由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法.该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.

    低照度图像目标检测空间感知注意力机制多尺度特征融合多感受野增强模块

    锚框校准和空间位置信息补偿的街道场景视频实例分割

    张印辉赵崇任何自芬杨宏宽...
    94-106页
    查看更多>>摘要:街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的问题,本文提出锚框校准和空间位置信息补偿视频实例分割(Anchor frame calibration and Spatial position information compensation for Video Instance Segmentation,AS-VIS)网络.首先,在预测头3个分支中添加锚框校准模块实现同锚框纵横比匹配的多类型感受野采样,解决目标边缘提取不充分问题.其次,设计多感受野下采样模块将各种感受野采样后的特征融合,解决下采样信息缺失问题.最后,应用多感受野下采样模块将特征金字塔低层目标区域激活特征映射嵌入到高层中实现空间位置信息补偿,解决高层特征空间细节位置信息匮乏问题.在Youtube-VIS标准库中提取街道场景视频数据集,其中包括训练集329个视频和验证集53个视频.实验结果与YolactEdge检测和分割精度指标定量对比表明,锚框校准平均精度分别提升8.63%和5.09%,空间位置信息补偿特征金字塔平均精度分别提升7.76%和4.75%,AS-VIS总体平均精度分别提升9.26%和6.46%.本文方法实现了街道场景视频序列实例级同步检测、跟踪与分割,为无人驾驶车辆环境感知提供有效的理论依据.

    街道场景视频实例分割锚框校准空间信息补偿无人驾驶

    基于边缘引导和动态可变形Transformer的遥感图像变化检测

    雷涛翟钰杰许叶彤王营博...
    107-117页
    查看更多>>摘要:卷积神经网络(Convolutional Neural Network,CNN)和Transformer的混合架构能够有效建模图像的局部与全局特征,已成为遥感图像变化检测任务的主流网络.然而这类网络仍面临着一些挑战.CNN分支中的卷积和池化运算通常会抑制遥感图像中的高频信息,降低目标边界的精度;此外,Transformer分支对图像像素进行等同长程依赖关系建模,忽略了变化目标的形状及语义关联信息,导致网络对变化目标特征的表达不足.为解决上述问题,提出了基于边缘引导和动态可变形Transformer的遥感图像变化检测网络.在CNN分支中设计了边缘信息引导模块,利用高频信息增强目标区域的边缘信息,从而改善变化目标的轮廓精度.同时设计了一种新颖的动态可变形Transformer,能够自适应地匹配形状不同的变化目标,选择与变化相关的特征建模长程依赖关系,以提高网络的特征表达能力.实验结果表明,提出的方法在三个公开数据集LEVIR-CD、CDD和DSIFN-CD上显著提高了检测精度,在变化目标的边界精度和内部完整性方面都明显优于当前的主流网络.

    遥感图像变化检测高频信息边缘信息动态可变形Transformer

    基于图拉普拉斯正则化的PET图像核重建方法

    盛玉霞孙坤柴利
    118-128页
    查看更多>>摘要:正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法.设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法.

    PET图像重建核方法深度图像先验图拉普拉斯正则化