查看更多>>摘要:Understanding the spatial and temporal distribution of different paleontological communities in the southern South China Sea (SCS) is fundamental to explore its paleoclimatic and paleoenvironmental changes. In this study, foraminifera, pollen and diatoms from 100 surface sediment samples covering 40000 km2 of sea floor in the southern SCS were comprehensively investigated in terms of their assemblage and distribution. The results showed the existence of abundant foraminifera and pollen in most of the samples, although diatom communities were relatively scarce. Foraminifera were dominated by G. sacculifer, G. menardii, G. ruber, while diatoms were characterized by T. simonsenii, T. nitzschioides and T. longissima, indicating a typical tropical marine environment. The pollen assemblages showed a better reflection of montane rainforest, tropical rainforest and mangrove. The spatial differences among foraminifera assemblages may indicate the effect of water depth and a warmer environment in the southeast part of the study area, while the spatial patterns of diatom and pollen assemblages imply the influence of coastal current. Our study also noted that the compositions of paleontological communities in the SCS can vary significantly in a short distance, and synthesized studies on multiple biological groups are needed to reconstruct the Quaternary climate and the oceanographic environment.
查看更多>>摘要:In this study, 90 surface water samples were collected from Shandong Province (SDP) in the dry and wet seasons and analyzed using statistical analysis, hydrochemical methods and water quality index (WQI). The content of main ions showed seasonal variations, with a higher average value in the dry season than in the wet season. Sampling points exhibiting high contents of the main chemical components were mainly distributed in areas southwest of SDP, north of Weifang, and around Jinan. The saturation index of carbonate minerals was greater than zero, while that of evaporite minerals was less than zero. The hydrochemical characteristics of surface water are mainly dominated by rock weathering as well as cation exchange. In addition, surface water in SDP has significantly been affected by anthropogenic factors. Most of the surface water could be classified as weakly alkaline soft-fresh water, with the hydrochemical types of SO4·Cl-Ca·Mg and SO4·Cl-Na. In terms of WQI, 47.88% and 37.88% of the water samples in SDP were classified as poor water in the dry and wet seasons, respectively. On the whole, the water quality is higher in the wet season than in the dry season, and surface water in SDP is generally suitable for agricultural irrigation.
查看更多>>摘要:The Permian-Triassic transition saw extreme climatic changes that severely impacted the terrestrial ecosystem. Fossil plants, particularly fossil woods, are sensitive to climatic changes, and they, therefore, are unique materials revealing extreme environmental and climatic changes on land at that time. Abundant conifer woods were discovered in the Lopingian (Late Permian) strata of the Sunjiagou Formation in Shanxi Province, North China. The newly finding permineralized woods record the unique landscape of Lopingian North China. They represent a new conifer genus and species:Shanxiopitys zhangziensis gen. et sp. nov. Analyses of growth pattern and anatomical characteristics of the fossil woods indicate these trees grew under optimal growing conditions, and without seasonal growth cessation. However, climate signals from leaf fossils, vertebrate fossils and sedimentary evidences indicate a strongly seasonal climate in North China during the Lopingian. Thus, it is speculated that these trees likely lived in the gallery forests, which were distributed along the paleo-rivers within a seasonal landscape in the central North China block during the Lopingian.
查看更多>>摘要:In arid regions, the stable hydrogen and oxygen isotopic composition in raindrops is often modified by sub-cloud secondary evaporation when they descend from cloud base to ground through the unsaturated air. As a result of kinetic fractionation, the slope and intercept of the δ2H-δ18O correlation equation decrease. The variation of deuterium excess from cloud base to the ground is often used to quantitatively evaluate the influence of secondary evaporation effect on isotopes in precipitation. Based on the event-based precipitation samples collected at Urumqi Glacier No. 1, eastern Tianshan during four-year observation, the existence and impact of secondary evaporation effects were analyzed by the methods of isotope-evaporation model. Under high air temperature, small raindrop diameter and precipitation amount, and low relative humidity conditions, the remaining rate of raindrops is small and the change of deuterium excess is large relatively, and the slope and intercept of δ2H-δ18O cor-relation equation are much lower than those of Global Meteoric Water Line, which mean that the influence secondary evaporation on precipitation enhanced. While on the conditions of low air temperature, high relative humidity, heavy rainfall, and large raindrop diameter, the change of deuterium excess is small relatively and the remaining rate of raindrops is large, and the slope and intercept of δ2H-δ18O correlation equation increase, the secondary evaporation is weakened. The isotope-evaporation model described a good linear correlation between changes of deuterium excess and evaporation proportion with the slope of 0.90‰/%, which indicated that an increase of 1% in evaporation may result in a decrease of deuterium excess about 0.90‰.
查看更多>>摘要:While acid mine drainage (AMD) issues have become a topic of global concern, few studies have focused on acid drainage problems of non-mining activities. We conducted field research and a series of laboratory experiments to investigate the characteristics, release processes and formation of acid drainage contamination. Spoil rock samples and adjacent surface water, groundwater, soil and sediment samples were collected at a railway tunnel construction site in central China, and various parameters, such as the pH, mineral ion concentrations, and heavy metal concentrations, were measured. Based on the measured concentrations, surface water and sediments were seriously contaminated by acids, sulfate salts and heavy metals. Contamination in surface water showed a decreasing tendency as the distance from the spoils increased, while that in sediments showed a greater influence of coprecipitation and adsorption processes of heavy metal ions. The eluviation experiments of three rock samples indicated that R2 (silty fine sandstone) was the most likely major acid drainage contributor. Thiobacillus ferrooxidans was cultured and isolated from contaminated water to study the oxidation conditions during the release processes. The significant release of acid drainage when air and bacteria were both in the culture container suggested that oxygen and bacteria were necessary to produce acid drainage from spoils.
查看更多>>摘要:As the largest intermontane basin in the northeastern Tibetan Plateau (TP), the Qaidam Basin provides unique insight into paleoclimatic change and its relationship with global change and uplift on the TP. In this study, based on morphological comparison, fossil fruit of Cyclocarya from the Early Oligocene Shangganchaigou Formation in the Qaidam Basin is assigned as Cyclocarya cf. weylandii. The discovery of Cyclocarya cf. weylandii demonstrates the occurrence of Cyclocarya in the Oligocene sediment in Qaidam Basin. This is the first record of Cyclocarya fossil of Early Oligocene Age in China and indicates that Cyclocarya has existed on the northeastern TP since at least the Early Oligocene. The living analogues of the current fossil now lives in sub-tropical China, where the East Asian Monsoon is prevalent. Integrating the new fossils and previously reported fossil remains of plants and fishes, it can be inferred that the Early Oligocene Qaidam Basin was primarily influenced by westerly circulation and had a relatively warm and humid climate, which was in sharp contrast to the present-day climate in Qaidam Basin.
查看更多>>摘要:On September 5, 2019, a moderate earthquake of Mw5.4 unexpectedly occurred in the apparently quiescent central basin of the South China Sea. We immediately carried out a seismicity monitoring experiment around the epicenter by using broadband ocean bottom seismometers (OBS) for the following three scientific targets. The first is knowing the earthquake seismogenic mechanism, fault structure and further development. The second is finding the role of the residual spreading ridge playing in earthquake processes and further revealing the deep structures of the ridge directional turning area. The third is confirming the existence and significance of the so called "Zhongnan fault". This paper reports the preliminary results of the first phase experiment. Five OBSs were deployed for seismicity monitoring with a duration of 288 days, but only three were recovered. Micro-earthquakes were firstly detected by an automatic seismic phase picking algorithm and then were verified by analyzing their seismic phases and time-frequency characteristics in detail. A total of 21, 68 and 89 micro-earthquakes were picked out from the three OBSs respectively within the distance of 30 km. The dominant frequency of these micro-earthquakes is 12-15 Hz, indicating tectonic fracturing. During the first two months after the mainshock the seismicity was relatively stronger, and micro-earthquakes were still occurring occasionally till the end of observation, indicating the epicenter area is active. We used Match&Locate method to locate 57 micro-earthquakes preliminarily. Their spatial distribution shows that the seismicity is developed mainly along the NE direction roughly parallel to the residual ridge with depth variations between 10-20 km.
查看更多>>摘要:The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides. First, the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then, the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County, China. A field investigation, remote sensing, numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes. The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis. The slope topography, rock mass weathering and unloading characteristics, river erosion, regional seismogenic structure, and rock mass structure characteristics were also discussed. The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects, interface dynamic stress effects, and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786. The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.
查看更多>>摘要:The large-scale implementation of the Gully Stabilization and Land Reclamation (GSLR) project induces various failures of loess slopes due to excavation in Yan'an, China. However, the deformation and failure behavior of these excavated loess slopes have not been fully understood. In this study, field investigation was undertaken for analyzing the distributions and failure features of excavation-induced loess slope failures. It is found that plastic failure mainly occurs in Q3 loess layers and brittle failure in Q2. To understand the underlying failure mechanism, a series of triaxial shear tests were conducted on intact Q3 and Q2 loess samples that with different water contents, namely natural water content (natural), dry side of the natural value (drying 5%), and wet side (wetting 5%). The characteristics of stress-strain curves and failure modes of the samples were analyzed. Results show that the stress-strain curves of Q2 samples are dominated by strain-softening characteristics, while Q3 samples mainly exhibit strain-harden features except in the drying state. Correspondingly, shear failures of Q3 specimens are mainly caused by shear crack planes (single, X or V-shaped). For Q2 loess, the dominance of tensile cracks is observed on the surface of damaged specimens. These disclose the different failure modes of excavated slopes located in different strata, that is, the arc sliding failure of Q3 loess slopes and the stepped tensile failure of Q2 loess slopes, and are helpful in the design and management of the ongoing GSLR projects in the Loess Plateau.
查看更多>>摘要:To predict the occurrence of the collapse disaster in toppling perilous rock under the action of bidirectional earthquakes, the dynamic stability and fuzzy reliability calculation method of toppling perilous rock under the action of bidirectional earthquakes is proposed. First, the mass viscoelasticity model is used to simulate two main control surfaces of toppling perilous rock, the seismic dynamic response model and motion equation of toppling perilous rock are established based on the D'Alembert principle, and the Newmark-β method is used to solve the dynamic motion equation. Then, the instability event of toppling perilous rock is considered a fuzzy event, the membership function expression of the stability coefficient of toppling perilous rock is determined based on the fuzzy failure criterion, the calculation equations of the toppling perilous rock dynamic stability coefficient and fuzzy reliability are established, and the fuzzy reliability evaluation method based on the probability distribution of reliability is proposed. Finally, the influence of different superposition modes of seismic excitation on the fuzzy reliability of toppling perilous rock is analyzed. The calculation results of toppling perilous rock in the engineering case show that the fuzzy reliability calculated after considering the fuzzy failure criterion is reduced by 10.73% to 25.66% compared with the classical reliability. Considering the bidirectional seismic excitation, the fuzzy reliability of toppling perilous rock is reduced by 5.46% to 14.89%. Compared with using the acceleration peak time encounter mode to superpose the seismic excitation, the fuzzy reliability of toppling perilous rock is reduced by 3.4% when the maximum action effect time encounter mode is adopted.