首页期刊导航|电子测量技术
期刊信息/Journal information
电子测量技术
电子测量技术

孙圣和

月刊

1002-7300

dzcl@vip.163.com

010-56103931

100009

北京市东城区北河沿大街79号

电子测量技术/Journal Electronic Measurement Technology北大核心CSTPCD
查看更多>>本刊坚定不移地确保社会效益功能的发挥,刊登新技术、工艺、设计、设备材料为主要内容,推广交流步进技术、科研成果和实践经验及时传播新成就、新技术、新器材的信息,以利于社会主义生产建设。
正式出版
收录年代

    跨域飞行器惯导装置设计及抗冲击测量方法

    李存健刘福朝刘宁赵辉...
    167-172页
    查看更多>>摘要:跨域飞行器由于工作环境复杂多变,在飞行过程中运动参数受瞬态冲击影响较大,导致导航精度降低且难以稳定控制.针对瞬态冲击导致跨域飞行器难以获取准确运动参数的问题,本文研制了一种基于大小量程加速度计组合的惯性导航装置,并提出了一种大小量程加速度计切换策略,利用巴特沃斯滤波器对采集的数据进行滤波处理,通过预设阈值的累计和控制图算法和自主可变滑动窗口实现对冲击点的检测,并采用分段式线性插值方法保证了数据的同步性,最后通过模拟仿真和跌落台试验对本文所提出的切换策略进行试验验证,试验结果表明,分段式线性插值方法的估计误差不超过0.6g,并在小量程加速计测量值饱和后,切换至大量程加速计的测量值,满足了实时切换的要求,进一步证明该惯性导航装置及大小量程切换策略可应用于飞行器进行跨域试验.

    跨域飞行器惯性导航装置累计和控制图法分段式线性插值跌落试验

    基于互质极化敏感阵列的参数降维估计算法

    逯岩斌陈文东杨赟秀舒勤...
    173-180页
    查看更多>>摘要:针对互质极化敏感阵列波达方向角(DOA)和极化参数估计中存在的计算复杂度高以及多信源情况下DOA解模糊配对错误问题,本文提出了一种基于模值约束降维求根多重信号分类(MUSIC)的DOA和极化参数联合估计算法.首先通过重构三维谱函数,对DOA和极化参数进行解耦,实现三维MUSIC方法的降维,然后利用多项式求根求解出DOA,并利用波束形成方法解决了互质阵列中存在的解模糊角度错配问题,最后利用极化矢量的模值有界性构造代价函数,推导出极化参数的闭式解.数值仿真结果验证了所提算法的有效性,结果表明,所提算法参数估计精度高于旋转不变技术(ESPRIT),与一维全局谱峰搜索MUSIC(1D-TSS-MUSIC)算法基本相当,但本文算法显著降低了计算复杂度,且在多信源情况下依然可以获得可靠的参数估计.

    互质极化敏感阵列模值约束降维求根MUSIC解模糊参数估计

    基于表面肌电信号及肌肉疲劳的上肢肌力预测

    隋修武高俊杰梁天翼蔡俊杰...
    181-187页
    查看更多>>摘要:为解决目前肌肉力测量时用肢体末端力表示实际肌肉力大小,以及未将肌肉疲劳程度考虑在内的问题,本文提出了一种基于表面肌电信号和肌肉疲劳的上肢肌肉力预测方法.利用AnyBody软件建立上肢肌肉骨骼模型,并将上肢末端力经过仿真得到单块肌肉的肌力大小;采用肌肉等长收缩的时间来表征肌肉疲劳程度.10名健康男性受试者进行上肢等长收缩实验,提取实验过程中肱二头肌肌电信号的积分肌电值、均方根、中值频率、平均功率频率、最大小波系数及其对应频率六个特征值;将肌肉力与特征值、肌肉疲劳程度进行分析后发现三者之间高度相关.采用麻雀搜索算法优化BP神经网络的权值和阈值,构造并训练上肢肌力预测模型.经测试集检验结果表明,该方法的误差小于12%,可以对肌力进行较为准确的预测.

    表面肌电信号肌肉疲劳SSA-BP回归预测模型AnyBody肌力预测

    基于SSVEP信号的相频特性分类算法研究

    丛佩超陈熙来肖宜轩李文彬...
    188-198页
    查看更多>>摘要:目前基于稳态视觉诱发电位(SSVEP)的脑-机接口在人机协作中受到广泛关注,现有面向SSVEP信号的相位与频率信息的深度学习分类方法,仍存在由于信息利用不充分导致的SSVEP信号分类效果较差等问题.而目前已出现多种分类算法用于解决上述问题.本文基于迁移学习思想提出一种用于SSVEP信号分类的深度神经网络模型,将快速傅里叶变换后的复向量作为输入,对各个导联的实、虚部向量进行卷积,学习对应的相频特性.该模型分为两部分:第一部分利用所有被试者之间的统计共性获得相位和频率信息的全局相频特征模块;第二部分利用训练好的全局相频特征模块对局部相频特征模块进行初始化,通过局部相频特征模块的进一步强化学习对训练参数进行微调,以减少每个被试者之间的个体差异.在公开数据集BETA上进行测试,在时窗长度为1.5s时,平均准确率和平均信息传输率分别为89.98%和71.80bit/min.实验结果表明,与其他方法相比,本文的分类算法模型取得了较为不错的分类效果,所设计的全局、局部相频特征模块能够改善个体差异因素对分类结果的影响,为深入挖掘、利用SSVEP信号中的相位和频率信息提供了全新思路.

    稳态视觉诱发电位迁移学习深度神经网络相频特性