首页期刊导航|电子测量与仪器学报
期刊信息/Journal information
电子测量与仪器学报
电子测量与仪器学报

崔建平

月刊

1000-7105

jemi@vip.163.com

010-64044400

100009

北京市东城区北河沿大街79号

电子测量与仪器学报/Journal Journal of Electronic Measurement and InstrumentCSCD北大核心CSTPCD
查看更多>>本刊旨在开展学术交流活动,沟通同行业科技人员之间的信息,以促进国内、外电子测量仪器的发展和科学技术的进步。
正式出版
收录年代

    含瓦斯煤破裂信号的量子优化降噪模型

    付华刘雨竹周文铮
    212-223页
    查看更多>>摘要:为剔除含瓦斯煤破裂信号采集过程中夹杂的扰动噪声,提出一种基于改进量子群算法(IQPSO)优化变分模态分解(VMD)的含瓦斯煤破裂信号量子优化降噪模型.针对 VMD受限于分解个数和惩罚参数的选取进而影响降噪效果,采用IQPSO算法优化VMD参数寻优过程,在QPSO算法中引入决策权重系数和自适应控制因子,提高算法粒子决策自适应性和参数搜索能力.利用参数优化的VMD算法分解含瓦斯煤破裂信号,计算各信号分量的有效相关系数来辨识噪声临界点,采用小波变换处理高频噪声并重构剩余分量得到降噪后的含瓦斯煤破裂信号.通过仿真信号和现场实测信号将降噪模型与EMD、VMD、PSO-VMD、SSA-VMD、GWO-VMD模型进行降噪效果对比.实验结果表明,提出模型处理后信号的信噪比提升 20%以上、均方根误差降低至 0.03 以下,能量占比在 90%以上,3 项指标均优于其他降噪模型,自适应性和分解效率较强,能够有效保留信号局部特征,对现场复杂信号具有更好的降噪效果.

    含瓦斯煤降噪模型变分模态分解量子粒子群参数优化

    用户决策在异构认知网络接入中的算法研究

    王诗严洁蓝浩张波...
    224-234页
    查看更多>>摘要:由于用户体验在当今通信系统的发展中起着越来越重要的作用,体验质量(QoE)成为了一种广泛使用的度量标准,它直观地反映了终端用户对无线服务的体验感受.针对智能家居环境中多业务多信道的异构认知无线电网络(Het-CRN)当中的接入与分配问题,提出了一种基于QoE驱动的无线资源分配方案,该方案结合改进的简单加权法(SAW)和层次分析法(AHP),全面评估了用户偏好、业务需求以及影响用户体验的信道参数,以获取不同业务的客观权重和主观权重,并进一步计算出综合权重.同时,采用排队论以离散时间马尔科夫模型对系统状态进行建模,能够有效的对不同用户负载下的行为进行分析,进而对不同的接入与分配算法进行性能评估.仿真结果表明,所提出的综合权重法相对于SAW法和AHP法,显著提高了不同业务的用户满意度,显著提升了用户体验质量.通过结合相对标准偏差对性能结果的分析进一步证明了综合权重法吞吐量、时延、拒绝率等关键性能指标上展现出更高的精密度,更准确地满足了用户的实际需求.

    认知无线电异构网络多属性决策体验质量网络接入选择性能评估

    基于DBO优化模糊PID的高低温试验箱温度控制方法

    杨洪涛金磊姜西祥秦鹏飞...
    235-243页
    查看更多>>摘要:高低温试验箱温控系统具有非线性、时滞性.传统采用的PID控制超调量高、调节时间长,而模糊PID控制效果受量化因子与比例因子拟定的影响.为了提高试验箱温控系统响应速度与稳定性,提出了一种基于DBO算法优化模糊PID量化因子与比例因子的高低温试验箱温控方法.首先建立了高低温试验箱加热模型传递函数,在MATLAB/Simulink中搭建传统PID、模糊PID、PSO优化的模糊PID以及DBO优化的模糊PID模型进行仿真,并利用PLC、触摸屏和温控箱搭建实验装置开展实际温控实验.仿真结果表明,DBO优化的模糊PID相较于PSO优化的模糊PID的超调量降低了 1.02%,调节时间降低了 106 s.实验结果表明,DBO优化的模糊PID相较于PSO优化的模糊PID超调量降低了1.1%,调节时间减少了120 s,验证了DBO算法优化模糊PID量化因子与比例因子相较于PSO效果更佳.补充测试DBO优化出的最佳量化因子与比例因子在不同温度下的温控效果,表明了DBO算法优化模糊PID控制方案的可行性.

    高低温试验箱DBO算法模糊PID温度控制

    不平衡数据下的轻量化轴承故障诊断方法

    赵小强李森
    244-254页
    查看更多>>摘要:针对深层网络特征参数量大和故障类别样本数量不平衡导致轴承故障诊断效果差的问题,提出了一种不平衡数据下的轻量化轴承故障诊断方法.首先,将传感器所采集的一维振动信号重构为二维灰度图作为模型输入;其次,设计了非对称多尺度特征提取模块,利用不同尺度的卷积和空洞卷积对输入信号进行特征提取,并将一部分特征映射到原始空间用于去除噪声和还原原始数据结构;紧接着,被提取的丰富特征信息送入所设计的通道位置双加权模块利用反通道卷积和局部均值的方法对关键通道和关键位置特征进行双向加权;然后,设计了深度可分离卷积(DSC)密集残差结构,在保证网络轻量化的同时增加各层网络的特征融合,并通过快捷路径优化了反向传播性能;最后,利用焦点损失函数根据不同故障类别的重要性调整模型的学习过程,从而更好地适应不平衡的数据分布.利用美国凯斯西储大学轴承数据集和本实验数据集实验验证,结果表明,所提方法在不平衡数据集下故障诊断准确率最高,轻量化程度最好,并具有较好的抗噪性能.

    轴承故障诊断轻量化特征加权密集残差结构焦点损失