首页期刊导航|地震工程与工程振动(英文版)
期刊信息/Journal information
地震工程与工程振动(英文版)
地震工程与工程振动(英文版)

齐霄斋

季刊

1671-3664

eeev@iem.net.cn

0451-86652649

150080

哈尔滨市南岗区学府路29号中国地震局工程力学研究所

地震工程与工程振动(英文版)/Journal Earthquake Engineering and Engineering VibrationCSCDEISCI
查看更多>>本刊是反映我国地震工程与工程振动领域最新成果和国外该领域最新进展的学术性期刊,旨在促进国际学术交流,推动地震工程与工程振动学科的发展,减轻地震灾害。本刊由中国地震局工程力学研究所主办、美国多学科地震工程研究所中心(MCEER)协办,半年刊。本刊主要刊登以下内容的综合评述、专题研究论文和科研简报:结构和工程体系震害评定,强震观测与分析,土木基础设施的地震危害性与危险性分析,场地对结构的影响和岩土工程,建筑物与生命线系统的抗震性能和设计原理,结构控制,现有基础设施系统的修复策略,结构动力学以及和地震工程相关的阻尼理论的进展,应急传感与监测系统和高性能材料在地震工程中的应用,以及风、波良和其它动荷载下土木工程结构振动问题。
正式出版
收录年代

    Time-domain dynamic constitutive model suitable for mucky soil site seismic response

    Dong QingChen SuJin LiguoZhou Zhenghua...
    1-13页
    查看更多>>摘要:Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.

    A novel mitigation measure for normal fault-induced deformations on pile-raft systems

    Mohammadreza Jahanshahi NowkandehMehdi Ashtiani
    15-33页
    查看更多>>摘要:Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock.

    Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence

    Tang YuchuanWang JiankangWu Gang
    35-50页
    查看更多>>摘要:In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.

    Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance

    Li ZhenyaPan YunchaoHe XianbinLv Chong...
    51-63页
    查看更多>>摘要:This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.

    Resilient performance of self-centering hybrid rocking walls with curved interface under pseudo-static loading

    Su XingYan ShiSun XiangleiWang Tao...
    65-85页
    查看更多>>摘要:Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.

    Finite element model updating for structural damage detection using transmissibility data

    Ahmad IzadiAkbar Esfandiari
    87-101页
    查看更多>>摘要:This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method uses the sensitivity relation of transmissibility data through a least-squares algorithm and appropriate normalization of the extracted equations.The proposed transmissibility-based sensitivity equation produces a more significant number of equations than the sensitivity equations based on the frequency response function(FRF),which can estimate the structural parameters with higher accuracy.The abilities of the proposed method are assessed by using numerical data of a two-story two-bay frame model and a plate structure model.In evaluating different damage cases,the number,location,and stiffness reduction of the damaged elements and the severity of the simulated damage have been accurately identified.The reliability and stability of the presented method against measurement and modeling errors are examined using error-contaminated data.The parameter estimation results prove the method's capabilities as an accurate model updating algorithm.

    Study on a conical bearing for acceleration-sensitive equipment

    Pang HuiXu WenDai JunwuJiang Tao...
    103-128页
    查看更多>>摘要:Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer's displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device's dynamic parameters,and shake table experiments are used to determine the proposed device's isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments.

    Direct scaling of residual displacements for bilinear and pinching oscillators

    Mohammad SaifullahVinay K.Gupta
    129-149页
    查看更多>>摘要:The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km.

    Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes

    Wan FengQin ShengwuLiu DewenZhao Tiange...
    151-161页
    查看更多>>摘要:At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.

    Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test

    Wu HouliGuo EndongWang JingyiDai Xin...
    163-178页
    查看更多>>摘要:As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.