首页期刊导航|化工进展
期刊信息/Journal information
化工进展
中国化工学会;化学工业出版社
化工进展

中国化工学会;化学工业出版社

黄丽娟

月刊

1000-6613

hgjz@263.net

010-64519500/9501/9502

100011

北京市东城区青年湖南街13号

化工进展/Journal Chemical Industry and Engineering ProgressCSCD北大核心CSTPCDEI
查看更多>>《化工进展》为中国科学技术协会批准,中国化工学会、化学工业出版社主办,化学工业出版社出版,国内外公开发行的技术信息型刊物,为中国化工学会会刊,全国中文核心期刊。《化工进展》以反映国内外化工行业最新成果、动态,介绍高新技术,传播化工知识,促进化工科技进步为办刊宗旨。所刊内容涵盖石油化工、精细化工、生物与医药、新材料、化工环保、化工设备、现代化管理等学科和行业。2006年《化工进展》杂志将继续倡导工业媒体为产业服务的理念,注重实用性和先进性,关注新技术、新产品及新设备。《化工进展》面向过程工业中的技术和管理部门,读者群包括化工、石油化工行业及过程工业中的企业技术和管理人员,以及高等院校及科研院所的科研人员和学生。
正式出版
收录年代

    钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理

    刘玉灿高中鲁徐心怡纪现国...
    4630-4641页
    查看更多>>摘要:以水葫芦为原料、CaCl2为改性剂,通过一步热解法制备了钙改性水葫芦基生物炭(CWHBC),基于表征技术分析了其表面形貌、比表面积、孔径分布、官能团组成等物化性能,并探究了其吸附去除水中敌草隆的效能与机理。结果表明,CWHBC比未改性生物炭(WHBC)具有更大的比表面积、更丰富的孔隙结构、更多的含氧官能团、更强的亲水性,这些物化性能的改变增强了生物炭的吸附能力。CWHBC对水中敌草隆的吸附符合准二级吸附动力学模型和Langmuir吸附等温线模型,表明该吸附以单层化学吸附为主,主要吸附机理为氢键作用、π-π作用和表面络合。单因素试验结果表明,CWHBC在各种条件下均具有良好的吸附性能,采用0。2mol/L HCl对其进行5次吸附/解吸循环后的吸附容量仍高达初次吸附容量的94。62%。因此,使用一步热解法制备的CWHBC可有效去除水中敌草隆,且具有较好的环境适应能力和重复使用性能。该研究提供了一种低成本、高效的吸附材料,能有效实现水葫芦的资源化利用,具有良好的工程应用前景与潜力。

    生物炭钙改性吸附剂敌草隆吸附动力学机理

    陈腐垃圾掺烧对垃圾炉焚烧特性的影响

    曾武清王予卜庆国马硕...
    4642-4653页
    查看更多>>摘要:为研究陈腐垃圾掺烧对焚烧炉焚烧特性的影响,以四川省资阳市某垃圾焚烧厂375t/d机械炉排焚烧炉为研究对象,在生活垃圾热值为7315kJ/kg的基础上,利用FLUENT与FLIC软件模拟分析了不同陈腐垃圾的掺混比和热值条件下垃圾焚烧炉的焚烧特性并进行了现场测试。结果表明:当陈腐垃圾掺混比在0~30%范围内变化时,随着陈腐垃圾掺混比的增加,焚烧炉出口O2质量分数增加,不同高度截面的烟气温度降低,垃圾床层表面水分蒸发、挥发分热解和固定碳燃烧速率分别下降了19kg/(m2·h)、29kg/(m2·h)和25kg/(m2·h),垃圾焚烧结束位置滞后了0。69m。当陈腐垃圾热值在2110~5156kJ/kg范围内变化时,随着陈腐垃圾热值的增加,焚烧炉出口O2质量分数减少,不同高度截面的烟气温度升高,床层表面水分蒸发、挥发分热解和固定碳燃烧速率分别提高了14kg/(m2·h)、14kg/(m2·h)和11kg/(m2·h),垃圾焚烧结束位置提前了0。85m。在满足焚烧温度大于1123K及焚烧炉热值设计的前提下,掺混垃圾的热值应控制在6849~8374kJ/kg范围内。模拟结果可为实际工程中掺烧陈腐垃圾提供解决方案。

    混燃陈腐垃圾计算流体力学两相流反应动力学

    炼化污水中低温水解酸化性能及微生物特性对比

    姜梁妍王庆宏李晋梁家豪...
    4654-4663页
    查看更多>>摘要:以炼化污水为研究对象,对比了中温和低温条件下的水解酸化性能、微生物群落结构和功能。中温(35℃)水解酸化更利于COD去除(40。51%)和水质可生化性提高(BOD5/COD提高至0。53),而低温(15℃)COD去除率和BOD5/COD仅为20。96%和0。26。中温条件有助于难降解化合物(O3S1和O4S1)的水解转化,与低温水解酸化相比,中温条件能够产生更多种类的小分子有机物。水解酸化微生物的宏基因组测序结果表明中温条件更利于微生物生长,有机物降解菌unclassified_p_Chloroflexi和可分泌水解酶的unclassified_o_Bacteroidales丰度较高。中温水解酸化富集了ko00643(苯乙烯降解)、ko00633(硝基甲苯降解)、ko00622(二甲苯降解)、ko00364(氟苯甲酸酯降解)、ko00642(乙苯降解)和ko00365(糠醛降解)等功能基因,促进了芳香类及含氮污染物的降解和出水可生化性能的提高。本研究揭示了炼化污水中低温水解酸化的水质变化及微生物特性。

    炼化污水中低温水解酸化有机物组成宏基因组厌氧生物技术

    锂电负极废涂布浆料破胶减容与资源化利用

    曾祥菲韩昀晖林凡黄荣...
    4664-4673页
    查看更多>>摘要:锂电负极废涂布浆料含水率高、胶态分散稳定性强,难以过滤。本文研究了废涂布浆料的胶态特性,分析了废浆料的高效破胶分离机理,并对其资源化进行了初步探索。羧甲基纤维素钠(CMC-Na)解离产生的羧基负离子(R-COO-)提供的静电斥力及苯乙烯-丁二烯橡胶(SBR)在颗粒间形成的空间位阻力是废浆料胶态稳定性的根本原因。酸度的降低能够抑制浆料中CMC-Na的解离,减少吸附于石墨颗粒表面的带电基团R-COO-,削弱静电斥力,造成颗粒团聚,并破坏SBR的架桥作用。pH=2。0时,废浆料破胶过滤效率较佳,过滤常数为0。0741m2/s,含水率降低48个百分点;X射线三维显微成像分析(X-CT)表明细微颗粒团聚破胶的同时,保留的静电斥力能够降低过滤阻力,促进滤饼孔道结构的发育,生成大孔隙半径,长喉道的渗流网络减少滤饼孔道吸附水的量;分离所得固相碳材对亚甲基蓝、铬(Cr6+)、COD的吸附量分别为435mg/g、0。645mg/g、87mg/g,满足《工业水处理用活性炭技术指标及试验方法》(LY/T 3279-2021)优级品标准。

    锂电胶体团聚涂布浆料过滤资源化

    页岩气采出水中小分子有机物的深度处理

    胡君杰黄兴俊雷成杨敏...
    4674-4680页
    查看更多>>摘要:页岩气采出水中小分子有机物通过反渗透膜处理往往也难以达标,为了解决这一问题,研究对比了臭氧催化氧化、活性炭吸附、臭氧催化耦合活性炭吸附三种工艺处理页岩气采出水的效果,考察了前两个工艺对采出水中小分子有机物深度处理的影响因素及耦合工艺的处理效果,结果表明:臭氧催化氧化工艺在pH为8左右、反应时间120min、臭氧投加量0。8g/L的最佳反应条件下,臭氧消耗量m(O3)∶m(CODCr)=3。58,CODCr从143mg/L降低至68。6mg/L,去除率52。03%。活性炭吸附工艺在pH为8左右、反应时间90min、活性炭填充比30%的最佳反应条件下,CODCr从143mg/L降低至103。2mg/L,去除率只有27。83%。臭氧催化耦合活性炭工艺在最佳反应条件下臭氧消耗量m(O3)∶m(CODCr)=2。78~2。88,CODCr从143mg/L稳定降低至25~34mg/L,去除率在76。2%~82。5%,可见臭氧催化耦合活性炭工艺对小分子有机物的处理效果最好。

    页岩气采出水小分子臭氧催化氧化吸附

    海藻酸钠/微晶纤维素复合水凝胶对水中甲基橙和亚甲基蓝的吸附性能与机理

    武哲曲树光冯练享曾湘楚...
    4681-4693页
    查看更多>>摘要:以海藻酸钠(SA)和微晶纤维素(MCC)为原料,合成海藻酸钠/微晶纤维素复合水凝胶(SA/MCC),对制备的复合水凝胶进行结构表征,并研究其对水中甲基橙(MO)和亚甲基蓝(MB)的吸附性能、模型和机理。结果表明,SA/MCC-20去除MO和MB的最佳pH分别为2和12,吸附模型更符合拟二级模型和Langmuir模型,最大吸附容量可达331。25mg/g、253。31mg/g。通过改变水溶液的pH,MO和MB均可在SA/MCC-20表面实现有效的吸附和解吸从而回收利用。经过5次吸附-解吸循环后,在最佳pH下SA/MCC-20对MO和MB的解吸率仍达91。52%和85。41%。SA/MCC对MO和MB具有较强的吸附能力,吸附机理主要包括静电吸引、范德华力、氢键作用、π-π堆积、孔扩散、孔填充等,并以化学吸附为主,物理吸附为辅。

    吸附剂海藻酸钠微晶纤维素水凝胶偶氮染料

    脱硫石膏转化α-半水石膏的特征及机理:实验与模拟

    怀立业仲兆平杨宇轩
    4694-4703页
    查看更多>>摘要:脱硫石膏的高效利用可以有效缓解一系列环境问题,变废为宝。本文利用二水石膏在含有微量无水硫酸钠的乙二醇水溶液中制备α-半水石膏,探究温度(94~98℃)、乙二醇体积分数(25%~35%)、硫酸钠浓度(0。1~0。3mol/L)对二水石膏向α-半水石膏脱水转化过程的α-半水石膏摩尔分数和动力学参数变化。研究发现,在乙二醇水溶液中,二水石膏向α-半水石膏脱水转化过程符合分散动力学模型。随着温度和乙二醇浓度的增加,动力学参数α基本保持不变,而参数β显著增加,导致活化熵∆S*增大,进而导致能垒Ea降低,促进了二水石膏向α-半水石膏脱水转化。微量无水硫酸钠的添加,显著缩短了α-半水石膏的成核诱导时间。通过分子动力学模拟,增加硫酸钠的浓度,Na+与SO42-的配位数增加,扩散系数绝对差值∆D降低,从而导致配位能力增加,解耦能力降低。本研究对高效利用脱硫石膏、掌握其向α-半水石膏的转化特征具有重要意义。

    二水石膏α-半水石膏乙二醇结晶动力学模型分子模拟

    硫化零价铁-微生物复合吸附剂对磷酸三(2-氯乙基)酯的吸附-降解机制

    黄鸿欧阳浩民杨依静李昌霖...
    4704-4713页
    查看更多>>摘要:氯代有机磷阻燃剂(chlorinated organophosphate flame retardants,Cl-OPFRs)已在环境中被广泛检出,由于其稳定、易迁移及具有生物毒性,因此已成为不可忽视的新兴有机污染物。本文选择环境中检出率较高的磷酸三(2-氯乙基)酯[tris(2-chloroethyl)phosphate,TCEP]为研究对象,以硫化零价铁(S/ZVI)和TCEP耐受降解菌(缓生新鞘氨醇菌,Novosphingobium tardaugens,N1)为研究材料,制备S/ZVI-微生物复合吸附剂(S/ZVI-N1),并对其去除TCEP的性能和降解途径进行探究。结果显示,S/ZVI-N1对TCEP的去除符合准一级动力学方程和Langmuir模型,表明该过程主要为单分子层的物理吸附作用,且根据准二级动力学方程的相关系数可知,在反应过程中同样存在化学吸附过程,S/ZVI-N1作用于TCEP 12h,去除率达58。9%,显著高于仅依靠Novosphingobium tardaugens的去除率(32。9%)和仅依靠S/ZVI的去除率(31。2%)。产物分析表明,S/ZVI-N1 作用下TCEP较单独零价铁(zero-valent iron,ZVI)作用下降解更彻底,证明复合吸附剂中S/ZVI和Novosphingobium tardaugens之间存在协同作用,其最佳的反应条件为pH 5~7和30~35℃。微观分析显示,微生物和S/ZVI均参与了TCEP的降解。通过产物分析推导,S/ZVI-N1 对TCEP主要有 2 条降解途径,分别为S/ZVI主导的C—Cl键断裂和Novosphingobium tardaugens主导的O—P键断裂,最终生成磷酸三乙酯(triethyl phosphate,TEP)和磷酸(H3PO4)。

    氯代有机磷阻燃剂复合吸附剂微生物降解硫化零价铁降解途径磷酸三(2-氯乙基)酯

    垃圾焚烧典型工段灰/渣理化特性及环境风险性

    尹俊权吴寅凯李卫华孙英杰...
    4714-4725页
    查看更多>>摘要:研究了垃圾焚烧典型工段5种灰/渣样品(余热锅炉灰/渣S1、半干法脱酸灰S2、布袋除尘灰S3、飞灰原灰S4和螯合剂稳定化飞灰S5)的表观特征、化学特性和浸出特性,并评估了灰/渣样品赋存重金属的环境风险。结果表明:S1呈现与其他灰样显著的表观特征差异,其表观颜色泛黄,颗粒大小不均,Si、Al含量较高,可资源化利用潜力较大;S3可溶性氯盐、高毒性重金属(Pb、Cd)含量较高,可进行单独脱氯、解毒处理;S5粒径级配在 7~20μm和 40~120μm存在两处波峰,其稳定化效果存在一定缺陷。S1 赋存Cr(4。45%)和S3 赋存Pb(3。04%)、Cd(4。28%)的可交换态和碳酸盐结合态占比相对较高,表明其潜在浸出环境风险较高,在其无害化处理和资源化利用过程中需重点关注,尤其是酸性(如酸雨或渗滤液浸沥)处置或应用场景。S1赋存重金属的潜在环境风险远低于其他4种灰样;模拟渗滤液浸提环境下,5种灰/渣浸出液重金属的综合性环境风险水平均高于模拟酸雨浸提环境,且S1、S3、S4和S5中Cd的浸出环境风险水平表现为"极强"等级。研究结果可为垃圾焚烧典型工段灰/渣的分类利用、精细化管理以及科学的环境风险评估提供理论依据。

    垃圾焚烧工艺流程灰/渣理化特性环境风险

    磷铁渣高温活化浸出-沉淀法制备电池级FePO4的工艺及应用

    袁明哲秦安瑞周桂民陈秋霖...
    4726-4737页
    查看更多>>摘要:磷铁渣是黄磷生产的副产物之一,化学性质稳定,常作为固体废物处理,不仅污染环境,也消耗了大量人力物力。如何合理利用磷铁渣中铁(Fe)、磷(P)元素是磷化工企业必须解决的问题。以磷铁渣制备磷酸铁(FePO4)的传统技术存在能耗大、副产物安全隐患大、难以实现工业化生产等缺点。有鉴于此,本文采用磷铁渣、磷酸、盐酸、氨水为原料,通过高温活化浸出-沉淀法制备了电池级FePO4。在高温活化浸出阶段,探究了浸出时间、浸出温度、盐酸浓度、液固比与磷铁渣浸出率的关联规律。并研究了反应温度、时间、pH、投料比等条件对制备FePO4性能的影响。对浸出液中Fe、P元素浓度和FePO4晶体结构、形貌和粒度进行了分析。实验结果表明,磷铁渣浸出的最佳条件是:浸出时间3h、浸出温度90℃、盐酸浓度5。5mol/L、液固比20mL/g,在此浸出条件下Fe元素浸出率可达93。55%,P元素浸出率可达82。21%,固体渣浸出率可达90。06%。沉淀反应过程的最佳条件为:反应温度70℃、反应时间2h、反应pH=1。2、Fe/P投料比为1,此条件制备的磷酸铁(FePO4)材料结晶度高,形貌均匀,分散性好,一次粒径为100~200nm,铁磷比为0。97,杂质含量完全符合行业标准。以此合成的磷酸铁锂(LiFePO4)正极材料电化学性能较好,在1C倍率下,放电比容量可达到151。62mA·h/g,表明所制备的FePO4完全满足LiFePO4正极材料前体的要求。

    磷铁渣活化浸出沉淀法电池级磷酸铁