首页期刊导航|计算机工程
期刊信息/Journal information
计算机工程
华东计算技术研究所 上海市计算机学会
计算机工程

华东计算技术研究所 上海市计算机学会

游小明

月刊

1000-3428

hdsce@sohu265359.sohuvip.net

021-54972331

200233

上海市桂林路418号

计算机工程/Journal Computer EngineeringCSCD北大核心CSTPCD
查看更多>>本刊是中国电子科技集团公司第三十二研究所(华东计算技术研究所)主办的学术性刊物,是上海市计算机学会会刊。主要特点:以最快的速度、科学求实的精神,精选刊登代表计算机行业前沿科研、技术、工程方面的高、精、尖优秀论文。贯彻党的“双百”方针,繁荣科技创作,促进国内外学术交流,探讨和传播计算机科学的理论和实践,加速和促进我国计算机事业的发展。
正式出版
收录年代

    文本视觉问答综述

    朱贵德黄海
    1-14页
    查看更多>>摘要:传统视觉问答(VQA)大多只关注图像中的视觉对象信息,忽略了对图像中文本信息的关注。文本视觉问答(TextVQA)除了视觉信息外还关注了图像中的文本信息,能够更加准确并高效地回答问题。近年来,TextVQA已经成为多模态领域的研究热点,在自动驾驶、场景理解等包含文本信息的场景中有重要的应用前景。阐述TextVQA的概念以及存在的问题与挑战,从方法、数据集、未来研究方向等方面对TextVQA任务进行系统性的分析。总结现有的TextVQA研究方法,并将其归纳为3个阶段,分别为特征提取阶段、特征融合阶段和答案预测阶段。根据融合阶段使用方法的不同,从简单注意力方法、基于Transformer方法和基于预训练方法这 3个方面对TextVQA方法进行阐述,分析对比不同方法的特点以及在公开数据集中的表现。介绍TextVQA领域4种常用的公共数据集,并对它们的特点和评价指标进行分析。在此基础上,探讨当前TextVQA任务中存在的问题与挑战,并对该领域未来的研究方向进行展望。

    文本视觉问答文本信息自然语言处理计算机视觉多模态融合

    基于AVX512的格密码高速并行实现

    雷斗威何德彪罗敏彭聪...
    15-24页
    查看更多>>摘要:量子计算的迅速发展可能对当前广泛使用的公钥密码算法造成严重威胁。格密码因优秀的抗量子安全性和高效的计算效率在后量子密码中占据重要地位。美国国家标准技术研究院于2022年5月公布4个后量子密码标准,其中3个是格密码算法,Kyber算法便是其中之一。随着后量子密码标准的确定,Kyber算法高效实现的需求日益增加。基于512位高级向量扩展(AVX512),对Kyber算法进行优化与高速并行实现。使用惰性模约减、优化的蒙哥马利模约减及优化的快速数论变化等技术,充分利用计算机的存储空间,减少大量不必要的模约减操作,提高多项式计算的效率与并行性。采用冗余比特技术,增强多项式抽样过程中比特的并行处理能力。通过AVX512的512 bit位宽和 8路并行实现哈希运算,并对其产生的伪随机比特串进行合理调度,充分发挥并行性能。基于AVX512指令集高速并行实现Kyber上的多项式计算和抽样,并进一步实现整个Kyber公钥加密方案。性能测试结果表明,与C语言实现相比,基于AVX512实现的密钥生成和加密算法获得了10~16倍的加速,解密算法获得了约56倍的加速。

    后量子密码格密码公钥加密512位高级向量扩展指令集并行计算

    Kubeflow异构算力调度策略研究

    孙毅王会梅鲜明向航...
    25-32页
    查看更多>>摘要:Kubeflow将机器学习和云计算技术两个技术领域相结合,集成了大量的机器学习工具,为生产级的机器学习平台落地提供了可行方案。机器学习通常依托图形处理器(GPU)等专用处理器来提高训练和推理速度,随着云计算集群规模的动态调整,不同计算架构的云计算节点可以灵活地加入/退出集群,传统的轮询调度策略已无法满足动态调整下的异构算力资源调度。为解决Kubeflow平台异构算力的分配优化问题,提高平台资源利用率,实现负载均衡,提出一种基于云的图形处理器-中央处理器(CPU-GPU)异构算力调度策略,采用量化后的负载均衡度和优先级两个判断指标,细颗粒度化显存分配,将计算资源挂载给对应的Pod以实现算力资源的细颗粒度调度。根据集群各节点算力资源设计资源权重矩阵,利用改进的遗传算法获取Pod的最优部署方案,保证多个任务的执行。实验结果表明,该调度策略对并行任务支持效果较好,且在资源请求溢出的情况下,能够按照优先级调度执行并实现最优的负载,与平台原生策略相比,资源细化程度提升了一个数量级,集群负载均衡也有较为显著的提升。

    云计算机器学习异构算力资源调度遗传算法

    基于集成学习的交通事故严重程度预测研究与应用

    单永航张希胡川丁涛军...
    33-42页
    查看更多>>摘要:目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模型。基于真实交通事故数据集NASS-CDS完成训练,模型输入为车辆传感器可感知得到的事故相关特征,输出为车内乘员最高受伤级别。在第1层中,通过实验对不同学习器组合进行训练,最终综合考虑预测性能以及耗时挑选K近邻、自适应提升树、极度梯度提升树作为基学习器;在第2层中,为降低过拟合,采用逻辑回归作为元学习器。实验结果表明,该方法准确率达到85。01%,在精确率、召回率和F1值方面优于其他个体模型和集成模型,该预测结果可作为智能车辆决策规划模块先验信息,帮助车辆做出正确的决策,减缓事故损害。最后阐述了模型在L2辅助驾驶与L4自动驾驶车辆中的应用,在常规车辆安全防护的基础上进一步提升车辆的安全性。

    交通安全交通事故严重程度预测智能车辆集成学习K近邻自适应提升树极度梯度提升树逻辑回归

    基于改进Informer的云计算资源负载预测

    李浩阳贺小伟王宾吴昊...
    43-50页
    查看更多>>摘要:负载预测是云计算资源管理中的重要组成部分,准确预测云资源的使用情况可提高云平台性能及防止资源浪费,然而云计算资源使用的动态性和不确定性使得负载预测较为困难,尽管Informer在时序预测领域取得了较好的效果,但未对时间的因果依赖关系加以限制造成未来信息泄露,也未考虑网络深度的增加导致模型性能下降的问题。为解决上述问题,提出一种基于改进Informer的多步负载预测模型(Informer-DCR)。将编码器中各注意力块之间的正则卷积替换为扩张因果卷积,使深层网络中的高层能够接收更大范围的输入信息来提高模型预测精度,并保证时序预测过程的因果性。在编码器中添加残差连接,使网络中低层的输入信息直接传到后续的高层,解决了深层网络退化问题。实验结果表明,Informer-DCR模型在不同预测步长下的平均绝对误差比Informer、时间卷积网络等主流预测模型降低了8。4%~40。0%,并且在训练过程中表现出比Informer更好的收敛性。

    云计算负载预测Informer模型扩张因果卷积残差连接

    面向FT-M6678的对称矩阵特征值求解算法实现与优化

    于立韩林罗有才商建东...
    51-58页
    查看更多>>摘要:目前国产自主可控FT-M6678平台上没有对称矩阵特征值求解相关的实现,且平台上现有数学计算库不能很好地满足类似问题求解的需求。面向国产FT-M6678处理器,对对称矩阵特征值求解(SYEV)算法进行实现与优化,完善FT-M6678平台的线性代数计算库。通过对SYEV算法的实现过程以及运行热点的分析,基于FT-M6678平台进行编译优化、访存优化以及向量并行化优化,其中:编译优化是根据不同的编译选项指导编译器对程序优化以达到加速效果;访存优化包括缓存优化以及数据段与程序段的分配优化,用于提高矩阵数据的访存效率;向量并行化优化包括循环展开以及适配FT-M6678平台的单指令多数据流(SIMD)指令并行优化,用于提升程序的计算效率。在FT-M6678平台上对所实现并优化的算法进行正确性验证与优化性能分析,结果表明,算法能够正确通过LAPACK官方测试集测试,并且在FT-M6678平台上的加速效果可达到58。346倍,对比TMS320C6678平台速度可提升2。053倍。

    对称矩阵特征值FT-M6678平台热点分析缓存优化向量并行

    面向安全传输的低能耗无人机轨迹优化算法

    吴嘉鑫孙一飞吴亚兰武继刚...
    59-67页
    查看更多>>摘要:无人机凭借其灵活的机动性以及高数据传输速率,被广泛应用于大范围离散节点的数据采集工作,其机载能量的有限性也使得无人机能耗优化成为当前研究热点。然而,当环境中存在窃听节点时,如何在保障多个离散数据节点数据安全传输前提下优化无人机的能量消耗具有一定的挑战性。基于此,引入中继节点和安全容量,提出面向安全传输的低能耗无人机轨迹优化算法,力求从物理层面保障数据的安全传输。对无人机与地面节点的信道模型、无人机与数据节点之间的安全容量以及无人机飞行通信能耗进行建模。将问题形式化描述为以最小化无人机能耗为目标、数据节点与无人机之间的数据安全传输为主要约束的非确定性多项式难解优化问题。为解决该问题,对问题进行子问题分解,采用自组织映射方法以及定制的粒子群算法分别对无人机访问数据节点的最优次序以及在数据节点周边悬停的最佳位置进行求解,并根据现有工作提出3种基准方案进行性能对比。仿真实验结果表明,当中继节点的能量收集电路最大输出功率变化时,所提的优化算法在降低无人机总能耗方面相比BASE_D、BASE_M、BASE_R 3种基准方案分别平均提高7。25%、8。59%、11。57%。此外,在安全容量实现率方面,所提算法的性能均优于对比方案,例如,当安全容量阈值从0。001~0。500变化时,所提算法相比基准方案BASE_M平均提高23。45%。

    无人机安全容量低能耗无线传能能量收集

    基于多策略强化学习的低资源跨语言摘要方法研究

    冯雄波黄于欣赖华高玉梦...
    68-77页
    查看更多>>摘要:跨语言摘要(CLS)旨在给定1个源语言文件(如越南语),生成目标语言(如中文)的摘要。端到端的CLS模型在大规模、高质量的标记数据基础上取得较优的性能,这些标记数据通常是利用机器翻译模型将单语摘要语料库翻译成CLS语料库而构建的。然而,由于低资源语言翻译模型的性能受限,因此翻译噪声会被引入到CLS语料库中,导致CLS模型性能降低。提出基于多策略的低资源跨语言摘要方法。利用多策略强化学习解决低资源噪声训练数据场景下的CLS模型训练问题,引入源语言摘要作为额外的监督信号来缓解翻译后的噪声目标摘要影响。通过计算源语言摘要和生成目标语言摘要之间的单词相关性和单词缺失程度来学习强化奖励,在交叉熵损失和强化奖励的约束下优化CLS模型。为验证所提模型的性能,构建1个有噪声的汉语-越南语CLS语料库。在汉语-越南语和越南语-汉语跨语言摘要数据集上的实验结果表明,所提模型ROUGE分数明显优于其他基线模型,相比NCLS基线模型,该模型ROUGE-1分别提升0。71和0。84,能够有效弱化噪声干扰,从而提高生成摘要的质量。

    汉语-越南语跨语言摘要低资源噪声数据噪声分析多策略强化学习

    基于翻转网络的低相关性序列数据预测研究

    丁国辉刘宇琪王言开耿施展...
    78-90页
    查看更多>>摘要:在某些实际应用中,通常不存在与被预测时间变量具有高相关性的其他维度变量,或者这些维度变量难以采集。而具有较低相关性的时间序列数据普遍存在,其对于数据预测具有更重要的意义。提出一种基于注意力翻转网络的低相关性多维时间序列数据预测模型。针对低相关性时序数据具有相关性随时间而变化的特点,引入批处理滑动窗口以摆脱时间变化带来的干扰,更好地捕获维度相关性。针对传统门控循环单元(GRU)网络大量丢弃低相关性样本的问题,建立翻转GRU网络对低相关性多维数据进行初次过滤,控制多维数据在网络中的传递数量,避免维度变量因相关性较低而被丢弃,提升相关性较低的多维数据在模型中的存活时间。同时,利用基于维度的注意力机制自适应调整不同维度序列在相关性提取过程中的重要性。建立平方长短期记忆(LSTM)网络对分配权重后的数据进行拟合,更细致地确定相关性对被预测参数的影响。实验结果表明,该模型的决定系数可达0。95,预测性能优于GRU、LSTM等传统神经网络模型。

    时间序列数据深度学习相关性注意力机制长短期记忆网络门控循环单元

    基于有偏采样的连续进化神经架构搜索

    薛羽卢畅畅
    91-97页
    查看更多>>摘要:由于需要对每一个搜索到的架构进行独立的性能评估,神经架构搜索(NAS)往往需要耗费大量的时间和计算资源。提出一种基于有偏采样的连续进化NAS方法(OEvNAS)。OEvNAS在架构搜索过程中维护一个超网络,搜索空间中所有的神经网络架构都是该超网络的子网络。在演化计算的每一代对超网络进行少量的训练,子网络直接继承超网络的权重进行性能评估而无需重新训练。为提高超网络的预测性能,提出一种基于有偏采样的超网络训练策略,以更大的概率训练表现优异的网络,在减少权重耦合的同时提高训练效率。此外,设计一种新颖的交叉变异策略来提高算法的全局探索能力。在NATS-Bench和可微分架构搜索(DARTS)两个搜索空间上验证OEvNAS的性能。实验结果表明,OEvNAS的性能超越了对比的主流算法。在NATS-Bench搜索空间上,提出的超网络训练策略在CIFAR-10、CIFAR-100和ImageNet16-200上均取得了优异的预测性能;在DARTS搜索空间上,搜索到的最优神经网络架构在CIFAR-10和CIFAR-100上分别取得了97。67%和83。79%的分类精度。

    神经架构搜索网络性能评估超网络有偏采样权重耦合