首页期刊导航|计算机工程
期刊信息/Journal information
计算机工程
华东计算技术研究所 上海市计算机学会
计算机工程

华东计算技术研究所 上海市计算机学会

游小明

月刊

1000-3428

hdsce@sohu265359.sohuvip.net

021-54972331

200233

上海市桂林路418号

计算机工程/Journal Computer EngineeringCSCD北大核心CSTPCD
查看更多>>本刊是中国电子科技集团公司第三十二研究所(华东计算技术研究所)主办的学术性刊物,是上海市计算机学会会刊。主要特点:以最快的速度、科学求实的精神,精选刊登代表计算机行业前沿科研、技术、工程方面的高、精、尖优秀论文。贯彻党的“双百”方针,繁荣科技创作,促进国内外学术交流,探讨和传播计算机科学的理论和实践,加速和促进我国计算机事业的发展。
正式出版
收录年代

    一种基于协同演化的自适应约束多目标进化算法

    韩美慧王鹏李瑞旭刘仲尧...
    124-137页
    查看更多>>摘要:约束多目标优化(CMOP)问题的求解旨在将有限的搜索资源合理地配置到约束条件的满足与目标函数的优化2个方面,但问题约束的日趋复杂给求解算法带来了巨大挑战。提出一种基于协同演化的自适应约束多目标进化算法,该算法同时进化2个功能互补的种群(主种群和存档种群),使算法在求解复杂约束问题时能够实现约束处理与目标优化之间的良好平衡。首先,主种群进行双重繁殖,首次繁殖过程通过动态适应度分配函数自适应地利用不可行解所携带的有价值信息,使种群在进化前期强调对目标函数的优化,后期强调可行性,二次繁殖则与存档种群进行合作,以提高种群收敛性并维护多样性。然后,提出一种基于角度的选择方案更新存档种群,在保证种群良好多样性的同时保持种群向Pareto前沿的搜索压力。最后,与5种先进的约束多目标进化算法在33个基准问题上进行对比实验,结果表明,所提出的算法在解决各类CMOP问题时与对比算法相比更具优势,其效率平均提高了约67%。

    协同演化算法约束多目标优化双重繁殖动态适应度分配函数不可行解

    融合多尺度特征与上下文信息的语音增强方法

    更藏措毛黄鹤鸣杨毅杰
    138-147页
    查看更多>>摘要:在语音增强中,常用自编码器结构自动提取特征,但这样得到的特征单一或者冗余且不能较好地捕获语音信号的上下文依赖关系。因此,提出一种融合多尺度特征和上下文信息的语音增强方法MSF-CI。首先,利用多尺度卷积块提取语音信号的多尺度特征,解决特征单一问题;其次,利用注意力机制关注所提取特征的空间与通道关键信息,解决特征冗余问题;最后,使用门控卷积循环神经网络学习语音信号中跨度较长的上下文依赖关系,并通过门控线性单元提高该网络的非线性学习能力,从而提高模型的泛化性。实验结果表明,MSF-CI在低信噪比和不同噪声环境下增强语音信号的语音感知质量、短时客观可懂度等多个指标上均优于GRN、DPT-FSNet、U-Net等同类的单通道语音增强模型。在信噪比为0 dB时,该方法的平均语音感知质量和平均语音客观可懂度达到1。49和0。761。在构建的安多藏语语料库上验证模型的泛化性,平均语音感知质量和平均语音客观可懂度相对于噪声提高了 20。7%和11。3%,MSF-CI模型不仅可以提升语音的质量与可理解度,而且具有较优的泛化性。

    语音增强多尺度特征注意力机制门控卷积循环神经网络对数能量谱

    基于分割点改进孤立森林的网络入侵检测方法

    余长宏许孔豪张泽高明...
    148-156页
    查看更多>>摘要:随着网络攻击的不断增多和日益复杂化,传统基于监督的网络入侵检测算法不能准确识别没有类别标记或特征不明显的网络访问链接,而对于无监督的网络入侵检测算法,也存在检测效率和准确率低等问题。针对如何进一步提升网络入侵检测性能,提出使用自编码器(AE)与分割点改进孤立森林模型对网络入侵进行检测。首先,对无监督自编码器进行L1正则化,以增强自编码器的稀疏性,通过学习数据内在结构,自适应地提取具有判别性的特征,完成入侵攻击的特征提取;然后,使用改进的孤立森林分离异常点,即使用最大化均值与标准差之商来确定分割点划分最佳超平面来构建隔离树,使隔离树在相关子空间中具有更强隔离异常值的能力,并通过遍历所有隔离树中数据点的平均路径长度得到异常得分来判定异常流量。在KDDCUP99和UNSW-NB15数据集上的实验结果表明,与6种传统无监督方法相比,该方法较传统孤立森林准确率和召回率均提升约20%,F1值和曲线下面积(AUC)值均提升约10%,较其他无监督方法相比大幅降低了误码率。

    网络入侵检测稀疏自编码器孤立森林无监督学习隔离树

    车联网中支持非法签名定位的无证书匿名认证方案

    杨小东李沐紫马国祖李松谕...
    157-165页
    查看更多>>摘要:车联网环境中,车辆通过互联网连接到公共网络,车辆信息在传输过程中很容易遭受到攻击者的各种恶意攻击,从而导致车辆隐私信息泄露甚至威胁用户生命安全。2022年,为了保障车辆间公开通信中消息传输的安全性和隐私性,研究人员提出了一种车联网环境下的无证书匿名认证方案,并证明该方案在随机预言机模型下满足签名的不可伪造性。然而,通过安全性分析发现,该方案无法抵抗恶意的密钥生成中心替换攻击以及车辆之间的合谋攻击。针对上述安全缺陷,提出改进的车联网无证书匿名认证方案。在随机预言模型下基于椭圆曲线离散对数问题存在不可伪造性,同时也能够抵抗车辆之间联合发起的合谋攻击。此外,该方案支持非法签名的快速查询,能在聚合签名验证失败后,通过建立非法签名与聚合签名验证等式的关联性,节省对右子节点中非法签名的查找次数,从而迅速定位到非法签名的位置。实验结果表明,与同类方案相比,改进方案在聚合签名验证阶段的计算开销减少了至少25%,并能满足更多的安全属性。

    车联网匿名认证无证书签名签名伪造非法签名定位

    基于路径存储表的Hashgraph共识算法优化与实现

    刘寅昊蒋文保孙林昆王勇攀...
    166-178页
    查看更多>>摘要:Hashgraph是一种数据采用有向无环图(DAG)结构的区块链共识算法,Hashgraph引入了虚拟投票的概念,允许节点在无额外通信开销的情况下并发出块,实现异步场景下的拜占庭容错。然而,Hashgraph提出的虚拟投票算法存在算法时间复杂度较高、共识运行逻辑过于复杂等问题。为此,提出一种基于路径存储表的Hashgraph优化方案。首先,提出一种基于顶点可达表的见证人判定方法,通过存储路径的方式实时记录生成事件与历史事件的可达关系,在轮次划分阶段,通过查询顶点事件的可达信息取代回溯算法,降低见证人判断算法的时间复杂度;其次,针对顶点可达表无法跨轮次判断事件关系的问题,提出一种基于历史可达表的知名见证人判定方法,历史可达表将存储见证人与历史事件之间的可达关系,通过查询历史可达表解决知名见证人判定阶段需要反复回溯视图的问题;最后,根据顶点可达表和历史可达表改进Hashgraph中复杂的共识计算,提升算法效率,加快事件确认速度。实验结果表明,所提优化方案与Hashgraph原共识算法相比,算法运行效率提升65。76%,在吞吐量方面平均提升41。27%。

    区块链共识算法有向无环图Hashgraph协议拜占庭容错

    基于可解释性深度学习的物联网水质监测数据异常检测

    李永飞李铭洋常鑫曹可欣...
    179-187页
    查看更多>>摘要:随着物联网技术的发展和应用范围的扩大,物联网设备和传感器的数量和种类也在不断增加。物联网水质传感器在生态监测与保护领域起着至关重要的作用,针对物联网水质传感器采集的监测数据中数据量大、维度高、无标注等问题,提出一种基于可解释性深度学习的无监督异常数据检测算法。使用自动编码器(AE)和SHAP算法对多维水质数据集进行异常检测。通过训练自动编码器模型,标记重建误差较大的数据,使用SHAP解释自动编码器并计算被标记数据中各数据特征的重要性。基于这些特征的重要性,确定最终的异常值,从而实现对水质监测数据的异常检测。在物联网水质监测数据集上的实验结果表明,该算法能有效检测出异常数据,F1值为0。875,性能优于当前无监督异常检测领域常用算法。该算法对于处理物联网水质监测数据具有实际应用价值,此外,还可以应用于其他领域的海量物联网监测数据的异常检测,例如气象、环境等领域。

    深度学习自动编码器异常检测可解释机器学习无监督学习

    非独立同分布下联邦半监督学习的数据分享研究

    顾永跟高凌轩吴小红陶杰...
    188-196页
    查看更多>>摘要:联邦学习作为一种保护本地数据隐私安全的分布式机器学习方法,联合分散的设备共同训练共享模型。通常联邦学习在数据均有标签情况下进行训练,然而现实中无法保证标签数据完全存在,提出联邦半监督学习。在联邦半监督学习中,如何利用无标签数据提升系统性能和如何缓解数据异质性带来的负面影响是两大挑战。针对标签数据仅在服务器场景,基于分享的思想,设计一种可应用在联邦半监督学习系统上的方法Share&Mark,该方法将客户端的分享数据由专家标记后参与联邦训练。同时,为充分利用分享的数据,根据各客户端模型在服务器数据集上的损失值动态调整各客户端模型在联邦聚合时的占比,即ServerLoss聚合算法。综合考虑隐私牺牲、通信开销以及人工标注成本3个方面的因素,对不同分享率下的实验结果进行分析,结果表明,约3%的数据分享比例能平衡各方面因素。此时,采用Share& Mark方法的联邦半监督学习系统FedMatch在CIFAR-10和Fashion-MNIST数据集上训练的模型准确率均可提升8%以上,并具有较优的鲁棒性。

    联邦半监督学习联邦学习数据非独立同分布鲁棒性聚合算法数据分享

    基于记忆模块与过滤式生成对抗网络的入侵检测方法

    张慧妍梁勇兰景宏赵强...
    197-207页
    查看更多>>摘要:为了解决现有的网络入侵检测方法在异常样本有限时存在精确度低且容易产生过拟合的问题,提出一种基于记忆模块和过滤式生成对抗网络(GAN)的入侵检测方法MemFGAN。在生成对抗网络中,生成器采用编码器-解码器结构并引入1个记忆模块学习正常样本的特征向量进行记忆增强,生成器用于对给定的输入进行编码并将其用作查询请求,在记忆模块中查询最相关的项进行重构,生成器的重构误差作为异常分数用于入侵检测,在判别器之前增加过滤器过滤异常样本,利用判别器损失提高生成器对正常样本的生成能力以降低其异常分数。此外,分别为生成器和判别器设计了新的训练目标,实现利用已知异常标签对生成器进行监督,降低生成器对异常样本的重构能力以扩大其异常分数,从而提高模型的入侵检测精确度并缓解过拟合问题。在MAWILab、ISCX2012、IDS2017、IDS2018 4个入侵检测数据集上的实验结果表明,相较于基线方法,MemFGAN的F1值平均提高了 0。147,在入侵检测方面具有较好的准确性和泛化性,可以在异常样本有限时保持良好的检测能力。

    入侵检测生成对抗网络记忆模块弱监督学习特征增强

    一种面向室内动态行人场景的激光SLAM算法

    叶智奇章国宝朱宏伟
    208-217页
    查看更多>>摘要:在复杂室内环境中,消除动态行人对实时建图的干扰一直是激光同步定位与建图(SLAM)算法需要解决的核心问题之一。当前的SLAM算法主要关注静态场景,忽略了场景中存在的运动物体。然而,在室内场景中,频繁出现的移动行人降低了全局点云地图的质量,增加了后续定位与导航的不确定性。提出一种针对室内动态行人场景的紧耦合激光SLAM算法,以更好地适应此类复杂场景。在传统SLAM框架的基础上引入基于点云聚类与分割的预处理模块,用于准确消除动态行人点云。该算法首先采用基于欧氏距离的增强两步式聚类算法对点云进行聚类和分割,随后提取聚类结果的多维切片特征和强度特征,并结合支持向量机(SVM)的分类结果来识别场景中的行人实例,同时利用静态点云实时估计自身位姿并构建高分辨率点云地图。分别使用Hilti公开数据集以及真实场景数据对所提算法的动态点云去除效果和实时性进行测试,结果表明,相较于Removert、Dynablox等当前先进的激光SLAM算法,该算法能够显著改善点云地图的构建效果,降低其中动态行人点云的比例,且系统对单帧图片的处理时长不超过100 ms,满足实时性要求。

    同步定位与建图多传感器融合动态行人紧耦合点云处理

    面向视频数据的多模态情感分析

    武星殷浩宇姚骏峰李卫民...
    218-227页
    查看更多>>摘要:多模态情感分析旨在从文本、图像和音频数据中提取和整合语义信息,从而识别在线视频中说话者的情感状态。尽管多模态融合方案在此研究领域已取得一定成果,但是已有方法在处理模态间分布差异和关系知识的融合方面仍有欠缺,为此,提出一种多模态情感分析方法。设计一种多模态提示门(MPG)模块,其能够将非语言信息转换为融合文本上下文的提示,利用文本信息对非语言信号的噪声进行过滤,得到包含丰富语义信息的提示,以增强模态间的信息整合。此外,提出一种实例到标签的对比学习框架,在语义层面上区分隐空间中的不同标签以进一步优化模型输出。在3个大规模情感分析数据集上的实验结果表明,该方法的二分类精度相对次优模型提高了约0。7%,三分类精度提高了超过2。5%,达到0。671。该方法能够为将多模态情感分析引入用户画像、视频理解、AI面试等领域提供参考。

    多模态情感分析语义信息多模态融合上下文表征对比学习