首页期刊导航|计算机工程与科学
期刊信息/Journal information
计算机工程与科学
国防科学技术大学计算机学院
计算机工程与科学

国防科学技术大学计算机学院

王志英

月刊

1007-130X

jsjgcykx@163.net

0731-84576405

410073

湖南省长沙市开福区德雅路109号国防科技大学计算机学院

计算机工程与科学/Journal Computer Engineering and ScienceCSCD北大核心CSTPCD
查看更多>>本刊系国防科技大学计算机学院主办的计算机类综合性学术刊物,属中国计算机学会会刊,已先后被列为中文核心期刊、中国科技核心期刊、中国学术期刊(光盘版)全文入编期刊、中国科学引文数据库来源期刊(CSCD核心)、中国学术期刊综合评价数据库来源期刊。
正式出版
收录年代

    基于自适应纹理特征融合的纹理图像分类方法

    吕伏韩晓天冯永安项梁...
    488-498页
    查看更多>>摘要:现有基于深度学习的图像分类方法普遍缺少纹理特征的针对性,分类精度较低,难以同时适用于简单纹理和复杂纹理分类。提出一种基于自适应纹理特征融合的深度学习模型,能够结合类间差异性纹理特征做出分类决策。首先,根据纹理特征的最大类间差异性,构建图像的纹理特征图像;然后,采用原始图像与特征鲜明的纹理特征图像并行训练改进的双线性模型,获取双通道特征;最后,基于决策融合构建自适应分类模块,连接原图与纹理集的平均池化特征图进行通道权重提取,根据通道权重融合2个并行神经网络模型的分类向量,得到最优融合分类结果。在KTH-TIPS,KTH-TIPS-2b,UIUC和DTD 4个公共纹理数据集上对模型的分类性能进行评估,分别得到了99。98%、99。95%、99。99%和67。09%的准确率,表明所提模型具有普遍高效的识别性能。

    纹理分类决策融合深度学习双线性神经网络ResNet

    面向林地环境的四足机器人自主定位方法

    夏文强王书涵曾理湛罗欣...
    499-507页
    查看更多>>摘要:林地是四足机器人野外作业的典型场景,其树木多且间距小,对四足机器人快速导航的定位频率和精度提出了更高的要求。采用腿部里程计定位可以获得较高的更新频率,但林地地面松软、凹凸不平等会引起足端打滑,使其精度降低;而激光雷达定位,虽然林地环境特征丰富,但其存在一定匹配误差且更新频率低,也难以满足快速导航要求。针对此问题,提出了一种适用于林地环境的自主定位方法,采用腿部里程计去除激光雷达点云畸变,并分别提取林地地面和树干特征进行匹配,提高激光雷达定位精度;在激光雷达2次定位之间采用中值和窗口滤波融合腿部里程计的插值数据,提高定位频率。在林地实验中,四足机器人行走110 m,最终偏移为0。09 m,在设定路线导航下最终定位值与期望值相差0。2 m,定位频率500 Hz,四足机器人能准确顺利地完成导航任务。

    四足机器人林地定位激光雷达腿部里程计滤波

    增强依存结构表达的零样本跨语言事件论元角色分类

    张远洋贡正仙孔芳
    508-517页
    查看更多>>摘要:事件论元角色分类是事件抽取中的子任务,旨在为事件中的候选论元分配相应的角色。事件语料标注规则复杂、人力耗费大,在很多语言中缺少相关标注文本。零样本跨语言事件论元角色分类可以利用源语言的丰富语料建立模型,然后直接应用于标注语料匮乏的目标语言端。围绕不同语言的事件文本在依存结构上的表达共性,提出了使用BiGRU网络模块对触发词到候选论元的依存路径信息进行额外编码的方法。本文设计的编码模块能灵活地与当前主流的基于深度学习框架的事件论元角色分类模型相联合。实验结果表明,本文提出的方法能更有效地完成跨语言迁移,提高多个基准模型的分类性能。

    零样本跨语言事件论元角色分类依存结构BiGRU依存路径信息

    《计算机工程与科学》征文通知

    517页

    融合乌尔都语词性序列预测的汉乌神经机器翻译

    陈欢欢王剑Muhammad Naeem Ul Hassan
    518-524页
    查看更多>>摘要:面向南亚和东南亚的小语种机器翻译,目前已有不少研究团队开展了深入研究,但作为巴基斯坦官方语言的乌尔都语,由于稀缺的数据资源和与汉语之间的巨大差距,有针对性的汉乌机器翻译方法研究非常稀少。针对这种情况,提出了基于Transformer的融合乌尔都语词性序列的汉乌神经机器翻译模型。首先利用Transformer对目标语言乌尔都语的词性序列进行预测,然后将翻译模型的预测结果和词性序列模型的预测结果相结合进行联合预测,从而实现语言知识到翻译模型的融入。在现有小规模汉乌数据集上的实验表明,所提方法在数据集上的BLEU值相较于基准模型提升了0。13,取得了较为明显的效果。

    Transformer神经机器翻译乌尔都语词性序列

    基于长短期记忆网络的移动轨迹目的地预测

    晋广印赵旭俊龚艺璇
    525-534页
    查看更多>>摘要:移动轨迹目的地预测是基于位置服务的重要一环,现有的预测方法存在历史轨迹不能完全覆盖所有可能的查询轨迹(数据稀疏)问题,没有考虑前缀轨迹点对预测结果的影响差异(长期依赖问题)。为了解决上述问题,提出了轨迹分布式表示方法。首先,将轨迹进行网格划分,把表示位置的高维独热码向量进行降维处理,生成包含地理拓扑关系的低维嵌入向量。其次,对目的地进行聚类,把聚类中心作为簇中轨迹的标签,缩小相似轨迹的差异,放大不相似轨迹的特征,有效克服了数据稀疏问题。在目的地预测中,将自注意力机制引入长短期记忆网络,提出了基于长短期记忆网络的目的地预测模型SATN-LSTM,挖掘序列中的关键点并根据其重要程度分配权重,较好地解决了长期依赖问题。最后,在真实轨迹数据集上进行了多次实验,验证了模型的有效性,并与现有的模型进行对比,验证了本模型具有更好的准确性。

    目的地预测网格划分自注意力机制移动轨迹

    可靠响应表示增强的知识追踪方法

    赵琰马慧芳王文涛童海斌...
    535-544页
    查看更多>>摘要:知识追踪是教育数据挖掘领域中的一项关键任务,旨在建模学生随时间不断变化的知识状态,以推断学生对知识点的掌握程度。然而,现有知识追踪方法大多忽略了基于学生-习题-知识点关系构造的学生-知识点空间的不可靠性和高维稀疏性,并且未结合学生在习题上的作答情况生成习题的可靠响应表示。针对上述问题,提出可靠响应表示增强的知识追踪方法。具体地,首先根据学生的作答记录细粒度地划分学生-习题空间,并基于习题-知识点空间得到不同划分下的学生-知识点空间;其次,从学生-知识点空间的相对可靠性和绝对可靠性2方面获得学生-知识点空间的可靠性,并采用维数约减方法得到可靠且低维的学生-知识点空间;再次,结合学生在习题上的作答情况和习题表示方法得到习题在2种作答下的可靠响应表示;最后,利用长短期记忆网络和得到的可靠响应表示评估学生在不同时刻的知识状态。在4个真实数据集上验证了本文方法的有效性和可解释性。

    知识追踪教育数据挖掘可靠响应表示长短期记忆网络

    基于深度学习节点表示的谣言源定位方法

    刘维杨洁罗佳莉王赛威...
    545-559页
    查看更多>>摘要:随着互联网的普及,网络上的信息以惊人的速度传播给公众。然而,由于级联效应,虚假信息和谣言同时也在迅速蔓延,对社会造成了巨大的危害。在社交网络上找到谣言的传播源头,对抑制谣言的传播起到至关重要的作用。传统的谣言源定位方法大多未能够融合多源特征且定位准确率还需进一步提高,因此,提出一种基于深度学习的谣言源定位方法,根据观测受谣言影响的节点多源特征来识别谣言源。首先,根据节点与观测节点之间的影响力相似度得到节点的影响力向量。然后,利用自编码网络对节点的影响力向量进行编码,得到包含节点信息、扩散路径和传播时间信息在内的节点的新的嵌入表示。最后,根据节点新的影响力向量计算节点为谣言源的概率,以定位谣言源。在2个模拟网络和4个真实网络上的实验结果表明,与其他方法相比,所提方法能够以更快的速度定位谣言源,且谣言源定位的准确率提升了25%以上。

    社交网络节点表示谣言源多谣言源定位

    基于双通道轻量图卷积的序列推荐算法

    罗旭汪海涛贺建峰
    560-570页
    查看更多>>摘要:传统基于图神经网络的序列推荐算法,在构图阶段忽略了其他用户序列中项目的转换关系,针对这一问题,提出了一种基于双通道轻量图卷积的序列推荐算法。首先,为目标用户找到其邻居用户序列,将目标用户序列和得到的邻居序列合并成一个有向序列图,充分利用了用户之间潜在的协作信息。然后,通过双通道轻量图卷积,分别对2种序列进行信息传播,每个通道通过指数分母的形式组合每一层的信息,融合2个通道得到的嵌入生成最终的项目嵌入。最后,对得到的项目嵌入通过后几项取平均的方式提取短期偏好,再通过引入挤压激励网络的多头自注意力机制提取长期偏好,整合长短期偏好得到用户的最终偏好。在2个公开数据集Beauty和MovieLens-20M上进行充分的实验并验证了算法的有效性。

    序列推荐构图指数分母轻量图卷积

    第39届中国计算机应用大会CCF NCCA 2024征稿通知

    CCF计算机应用专业委员会中科国鼎数据科学研究院
    570页