查看更多>>摘要:由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN)的训练一直是一个难题.基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲信息编码机制的影响.在众多编码机制中,首脉冲时间编码(TTFS)具有良好的生物学基础和更高的能效,但现有TTFS编码采用单脉冲形式,信息表征能力较弱,编码所需时间窗较大.为此,在TTFS的单脉冲编码基础上,增加一个校准脉冲,形成一种自校准首脉冲时间(SC-TTFS)编码机制,并构建相应的SC-TTFS神经元模型.在SC-TTFS中,首脉冲为必定发放的脉冲,而校准脉冲根据首脉冲发放后剩余的膜电位来确定是否发放,用于对编码脉冲所引起的转换量化误差和截断误差进行补偿,同时缩小编码所需的时间窗.通过对多种编码对应的转换误差进行对比分析,以及在多种网络结构上进行ANN-SNN转换实验,验证了所提方法的优越性.采用CIFAR10和CIFAR100数据集,基于VGG和ResNet两种网络结构进行了实验验证.结果表明,所提方法在两类网络结构和两种数据集上均实现了精度无损的ANN-SNN转换,且相较于最先进的同类方法,所提方法所构建的SNN具有最短的网络推理延迟.另外,在VGG结构上,所提方法相比TTFS编码能源效率提升了约80%.