首页期刊导航|计算机学报
期刊信息/Journal information
计算机学报
计算机学报

高文

月刊

0254-4164

cjc@ict.ac.cn

010-62620695

100190

中国科学院计算技术研究所(北京2704信箱)

计算机学报/Journal Chinese Journal of ComputersCSCD北大核心CSTPCDEI
查看更多>>本刊是中国计算机领域的有代表性学术刊物,作为一种科学研究档案,代表了计算机领域各个研究阶段的水平。本刊被《工程索引》(美国)、《科学文摘》(英国)、《数学文摘》(美国)、《科技文献速报》(日本)、《文摘杂志》(俄罗斯)等多种权威系统收录。是科技部科技信息研究所科技论文统计源期刊、中国科学引文数据库来源期刊。
正式出版
收录年代

    基于样本关联感知的无监督深度异常检测模型

    席亮王瑞东樊好义张凤斌...
    2317-2331页
    查看更多>>摘要:异常检测的目标是识别正常模式中的异常模式.如何充分利用数据的各种特征信息来识别异常是当前异常检测的研究热点之一.许多数据挖掘及机器学习等方面的智能算法都被用于异常检测规则训练以提高其检测性能.目前已有模型存在着对复杂数据处理困难、没有充分利用数据样本间关联特征等问题,从而造成异常检测效果不甚理想.基于此,本文提出一种基于样本关联感知的深度学习模型并用于异常检测.模型通过对样本的原始特征和样本间的关联关系进行深入分析,利用无向图结构来提取样本间的关联特征,然后基于由特征编码器和图编码器构成的双路自编码器实现对样本的原始特征和关联特征的融合,产生样本在低维特征空间中高质量数据嵌入,然后进行解码重构并计算重构误差和重构特征,最后设计基于高斯混合模型的估计网络,基于重构特征和高质量的数据嵌入估计样本的概率密度,通过给定阈值来进行异常检测.实验结果表明,本模型的异常检测各项性能指标均比其他基于机器学习和深度学习的异常检测方法提升了2%左右,参数、消融和噪声实验结果也较其他算法更稳定,可视化实验也能够突出本模型在数据特征提取和充分利用等方面的优势.

    异常检测图神经网络高斯混合模型数据关联

    基于三支标签传播的半监督属性约简

    胡声丹苗夺谦姚一豫
    2332-2343页
    查看更多>>摘要:属性约简是粗糙集理论的重要应用之一.为了对部分标记的数据进行属性约简,一些基于粗糙集的半监督属性约简方法相继被提出,但这些方法在数据信息利用、运行代价、约简质量等方面仍然存在挑战.本文针对混合型分类数据,提出了一种新的基于三支标签传播的半监督属性约简(3WLPME)方法.该方法包括两个过程:三支标签传播(3WLP)和基于混合熵的启发式属性约简(MEHAR).其中,3WLP在经典标签传播算法的基础上,结合三支决策和主动学习思想,对无标签数据进行标注,并更新有标签集和无标签集.迭代执行上述过程直至收敛,可以提升最终的伪标签准确率.在MEHAR中,属性重要度由混合熵度量.基于依赖度和条件熵定义的混合熵,融合了粗糙集的代数表示和信息表示,能更深刻地反映属性的分类能力.本文对3WLP算法和MEHAR算法的有效性进行了理论分析.在UCI数据集上进行了以下仿真实验:3WLP与随机标签传播在伪标签准确率上的对比;不同属性约简算法在约简质量上的对比;3WLPME与其他基于粗糙集的半监督属性约简方法,在约简质量上的对比.实验结果验证了3WLP能获得较高的伪标签准确率;MEHAR在不降低分类准确率的前提下,能获得较小的约简;3WLPME在半监督约简过程中具有更高的效率和稳定性,说明本文所提方法是有效的.

    半监督学习属性约简三支决策标签传播邻域粗糙集混合熵