查看更多>>摘要:随着深度学习技术的不断进步,神经网络在各领域得到广泛应用,特别是在边缘计算环境中,例如智能交通和新型电网等典型场景.然而,神经网络的可靠性问题限制了其在真实世界的广泛应用.在复杂的边缘环境中,预训练模型往往因未涵盖所有可能的边缘情况而性能下降.因此,针对部署中的神经网络进行高效修复成为一个关键的研究课题.传统修复方法通常涉及整个模型的重新训练,这在边缘场景中具有诸多局限性.首先,不同地理区域的设备可能面临独特的自然噪声,使得统一模型难以适应所有环境.其次,深度神经网络的大规模参数使得其训练和部署时资源消耗巨大,且更新期间的服务中断将降低系统的可用性.为解决这些问题,本文提出了一种轻量级的补丁式神经网络修复算法.该算法通过引入个性化的补丁来增强神经网络对不同边缘环境中自然噪声和边角案例的鲁棒性.具体的,在故障定位阶段,类比于程序插桩中通过注入代码以检测、改进和分析软件行为,本文提出了神经网络插桩技术.通过将模型探针插桩进神经网络,观测其内部运行情况,实现了对错误样本的故障定位.在故障修复时,通过插入无监督搜索得到的神经网络补丁来纠正原始神经网络的输出.此外,本文提出了故障预测模块以提前预测潜在的错误输出,从而仅在必要时激活补丁.在基于2个数据集、15种噪声以及4个神经网络模型的实验中,与现有修复算法相比,本文方法在修复性能上取得了 6.64%至20.00%的提升.同时,本文方法所需的训练样本量减少了超过90%,而所需更新的参数量最高减少了 91.94%.这种有效且轻量的特性为解决边缘计算环境中神经网络的可靠性问题提供了有效途径.