首页期刊导航|计算机应用研究
期刊信息/Journal information
计算机应用研究
四川省电子计算机应用研究中心
计算机应用研究

四川省电子计算机应用研究中心

刘营

月刊

1001-3695

arocmag@163.com

028-85249567

610041

成都市成科西路3号

计算机应用研究/Journal Application Research of ComputersCSCD北大核心CSTPCD
查看更多>>本刊创刊于1981年,以其新颖性、技术性、实用性、工具性、知识性于一身,设置众多栏目,信息量极大,反映并涵盖了当今国内外计算机应用研究的主流技术、热点技术及最新发展趋势,是一份极具收藏价值的技术刊物。本刊读者对象为从事计算机应用、开发、研究的科技人员,大中专院校师生,各企事业单位技术人员,计算机业余爱好者及相关管理、情报工作者订阅、收藏。本刊现为中国计算机学会会刊,中国科技论文统计源核心期刊,全国中文核心期刊,中国科学引文数据库来源期刊, 中国学术期刊综合评价数据库来源期刊,并为多个检索数据库收录,在国内科技期刊评比中多次荣获优秀科技期刊奖。
正式出版
收录年代

    基于多通道可分离网络的古代壁画分类方法

    曹建芳贾一鸣田晓东闫敏敏...
    3489-3494页
    查看更多>>摘要:古代壁画艺术价值高、内容丰富,对壁画种类进行准确分类是研究者的难题之一.传统的壁画分类任务繁重且需要有经验的研究者完成;现有的图像分类算法已不适于分类含有较强背景噪声的壁画图像.针对以上问题提出了一种新的多通道可分离网络模型(multi-channel separable network model,MCSN)的解决方案.以GoogLeNet网络模型为基本框架,用小卷积核对壁画背景特征进行浅层提取,然后将7×7、3×3等较大卷积核十字分离成7×1、1×7和3×1、1×3等较小的卷积核提取壁画重要的深层次特征信息;使用软阈值化激活缩放策略(activation scaling)增加网络训练时的稳定性,最后通过softmax对壁画分类;使用小批量随机梯度下降(min-batch SGD)算法更新参数.精确率、召回率和F1值分别为88.16%、90.01%和90.38%.与主流分类算法相比,分类准确率、泛化能力、稳定性有了一定的提升,提高了壁画分类效率.

    壁画分类多通道可分离网络激活缩放策略GoogLeNet

    优化分类模块和估计模块的快速鲁棒目标跟踪方法

    熊丽婷张绍彪娄莉
    3495-3499页
    查看更多>>摘要:为了平衡跟踪器的分类与估计模块间的性能差距,提出一种模块性能均衡的跟踪器.首先,通过大量离线学习,将高阶特征纳入目标估计中;然后,对目标估计模块进行训练,预测目标对象与估计跟踪框之间的重叠.为了提高所提分类模块在面对干扰物时的鲁棒性,引入在线训练的分类模块,采用了难分样本挖掘方法,确保较高的区分能力.在OTBI00、VOT2016和TrackingNet三个公开数据集上进行实验,结果表明,与相关滤波、多域网络等方法相比,所提方法的重叠精度指标更优、跟踪精度更高,且收敛性明显快于梯度下降法,运行速率达到实时要求.

    跟踪器分类与估计高阶特征鲁棒性重叠精度指标

    解纠缠表示学习在跨年龄人脸识别中的应用

    陈莉明田茂颜佳
    3500-3505页
    查看更多>>摘要:跨年龄人脸识别因其在现实生活中的广泛应用而成为人脸识别领域的热门话题.针对跨年龄人脸识别精度较低的问题,引入解纠缠表示学习,提出了一个基于生成对抗网络的解纠缠表示学习(IPDRL)网络来实现人脸图像的识别.该网络由编码器、生成器和鉴别器构成.编码器在对特征中的年龄变化进行解纠缠的同时,对人脸图像的身份信息进行编码,提取只利于身份鉴别的特征,实现身份特征和年龄特征的解纠缠;生成器根据输入的年龄特征生成对应的身份保持的年龄图像;鉴别器通过对抗学习和多任务学习实现年龄和身份的类分布预测.通过将解纠缠表示学习、对抗学习和多任务学习相结合的方法,很好地保留了人脸图像的身份信息,并使跨年龄人脸图像识别的精度得到了提高.

    人脸识别解纠缠表示学习多任务学习生成对抗网络

    面向遥感图像云分割问题的新型U-Net模型

    李大海王榆锋王振东
    3506-3509,3516页
    查看更多>>摘要:目前,已知基于深度学习的云分割方法通常采用传统U型编解码结构的网络,该结构虽能有效利用编码端的空间位置信息,但整个网络参数过多、计算量大,同时其编码端仅采用简单卷积与下采样操作,无法有效获取高质量的上下文语义特征信息.针对上述情况提出一种新型的轻量级U-Net模型用于云分割问题.整个模型采用跳跃连接编码端浅层和中层信息的新U型编解码结构,并在其编码端嵌入由分组卷积与注意力机制组成的优化模块,同时构建上下语义融合连接,连接编码端与解码端相应的上下层.实验结果表明,在公共基准数据集38-Cloud上,该模型相比其他主流云分割网络在分割精度与模型参数等方面均能取得更优异的结果.

    云分割新型U-Net模型深度学习跳跃连接

    一种新的seq2seq的可控图像字幕的生成方法

    王源顺段迅吴云
    3510-3516页
    查看更多>>摘要:针对当前的图像字幕方法只能够用一种黑盒的、从外部难以控制的架构描述图像的问题.创造性地将图像字幕问题转换为seq2seq问题,达到了可控生成图像字幕的效果.设计一个由图像区域构成的实体集合或实体序列作为控制信号,在实体块切换的块哨兵和带视觉哨兵的自适应注意力机制的指导下,将控制信号有规律地输入到双层的长短期记忆网络(long short term memory,LSTM)中,以可控的方式指导模型生成对应的图像字幕;此外,baseline使用cross entropy loss来早停模型的训练,引入强化学习思想来解决训练时的优化目标与评估算法效果时指标不一致的问题,进一步优化模型效果.实验表明:在MSCOCO及Flickr30k数据集上,提出的算法在生成可控图像字幕、字幕质量、多样性上达到了非常好的效果.

    图像字幕seq2seq控制信号哨兵机制自适应注意力机制

    多通道CartoonGAN下的图像风格动漫化

    乔平安李静文曹家亮
    3517-3520页
    查看更多>>摘要:为解决真实图像转换为动漫风格图像出现的参数量大、图像纹理和颜色损失的问题,提出了一种多通道卡通生成对抗网络(MC_CartoonGAN).首先,使用HSCNN+(advanced CNNs for the hyperspectral reconstruction task)和遗传算法重新构建多通道图像数据集,丰富图像信息.其次,利用DenseNet网络进行特征复用减少参数的内存占用率及缓解梯度消失的问题.最后,引入多通道颜色重建损失函数,在保证了生成图像内容完整的情况下,降低了生成图像的颜色损失.实验结果表明,提出的多通道卡通生成对抗网络将真实图像转换成动漫风格图像的质量更优.

    生成对抗网络稠密连接网络多通道图像风格动漫化