查看更多>>摘要:The building cross-section shape significantly affects the flow characteristics around buildings,especially the recirculation region behind the high-rise building.Eight generic building shapes including square,triangle,octagon,T-shaped,cross-shaped,#-shaped,H-shaped and L-shaped are examined to elucidate their effects on the flow patterns,recirculation length L and areas A using computational fluid dynamics(CFD)simulations with Reynolds-averaged Navier-Stokes(RANS)approach.The sizes and positions of the vortexes behind the buildings are found to be substantially affected by the building shapes and subsequently changing the recirculation flows.The recirculation length L is in the range of 1.6b-2.6b with an average of 2b.The maximum L is found for L-shaped building(2.6b)while the shortest behind octagon building(1.6b).The vertical recirculation area Av is in the range of 1.5b2-3.2b2 and horizontal area Ah in 0.9b2-2.2b2.The L,Av and Ah generally increase with increasing approaching frontal area when the wind direction changes but subject to the dent structures of the#-shaped and cross-shaped buildings.The area-averaged wind velocity ratio(AVR),which is proposed to assess the ventilation performance,is in the range of 0.05 and 0.14,which is around a three-fold difference among the different building shapes.The drag coefficient parameterized by Ah varies significantly,suggesting that previous models without accounting for building shape effect could result in large uncertainty in the drag predictions.These findings provide important reference for improving pedestrian wind environment and shed some light on refining the urban canopy parameterization by considering the building shape effect.
查看更多>>摘要:Building surface cool materials are novel materials that can reduce urban heat island intensity and decrease building energy consumption.This study investigated the impact of radiative properties of materials,façade orientation,and morphological parameters on energy consumption in six typical residential neighborhoods in Nanjing,China.The neighborhood energy consumption of 16 application schemes considering the façade orientation factor is compared to determine the best energy-saving scheme.Seasonal and annual energy-saving rates,savings in electricity costs,and the price ceiling for materials per unit area are analyzed.The results show that for low-rise buildings,using cool materials only on the roof can reduce the annual energy consumption by 1%.When cool or super cool materials are also used on the building façade,the annual energy saving rate can be up to 3.4%and 4.3%,respectively.Using cool materials on the south façade of buildings is not recommended due to significant heat loss in winter.Considering savings in electricity costs and the price ceiling for materials per unit area,the price of cool and super cool materials should be less than 3.0 and 3.7 RMB/m2,respectively,assuming a lifespan of eight years in Nanjing.
查看更多>>摘要:A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected by climatic conditions.Indoor and outdoor environmental disturbances and the system's control strategy affect the indoor thermal comfort and energy efficiency of the system.Firstly,a multi-story residential building model was established in this study.Transient system simulation program was used to study the operation dynamics of three control strategies of the RFCS based on the calibrated model.Then,the performance of the control strategies in five climate zones in China were compared using multi-criteria decision-making in combination.The results show that control strategy has a negligible effect on condensation risk,but the thermal comfort and economic performance differ for different control strategies.The adaptability of different control strategies varies in different climate zones based on the consideration of multiple factors.The performance of the direct-ground cooling source system is better in Hot summer and warm winter zone.The variable air volume control strategy scores higher in Serve cold and Temperate zones,and the hours exceeding thermal comfort account for less than 3%of the total simulation period.Therefore,it is suggested to choose the RFCS control strategy for residential buildings according to the climate zone characteristics,to increase the energy savings.Our results provide a reliable reference for implementing RFCSs in residential buildings.
查看更多>>摘要:Seasonal thermal energy storage(STES)allows storing heat for long-term and thus promotes the shifting of waste heat resources from summer to winter to decarbonize the district heating(DH)systems.Despite being a promising solution for sustainable energy system,large-scale STES for urban regions is lacking due to the relatively high initial investment and extensive land use.To close the gap,this study assesses the potentials of using two naturally available structures for STES,namely valley and ground pit sites.Based on geographical information system(GIS)methods,the available locations are searched from digital elevation model and selected considering several criteria from land uses and construction difficulties.The costs of dams to impound the reservoir and the yielded storage capacities are then quantified to guide the choice of suitable sites.The assessment is conducted for the northern China where DH systems and significant seasonal differences of energy demand exist.In total,2,273 valley sites and 75 ground pit sites are finally identified with the energy storage capacity of 15.2 billion GJ,which is much larger than the existing DH demand in northern China.The results also prove that 682 valley sites can be achieved with a dam cost lower than 20 CNY/m3.By conducting sensitivity analysis on the design dam wall height and elevations,the choices of available natural structures are expanded but practical issues about water pressures and constructions are also found.Furthermore,the identified sites are geographically mapped with nearest urban regions to reveal their roles in the DH systems.In general,560 urban regions are found with potential STES units and most of them have STES storage capacities larger than their own DH demand.The novel planning methodology of this study and publicly available datasets create possibilities for the implementations of large-scale STES in urban DH systems.
查看更多>>摘要:The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years.Natural ventilation can improve indoor air quality(IAQ)and reduce carbon emissions.To evaluate gaseous pollutant levels in industrial buildings for the development of buoyancy-driven natural ventilation,two theoretical models of pollutant flushing(Model Ⅰ and Model Ⅱ)are developed based on the existing thermal stratification theory in combination with the mixing characteristics of lower pollutant.The results show that indoor pollutant flushing is mainly dependent on the pollution source intensity and effective ventilation area.The mixing characteristics of lower pollutant has an important effect on pollutant stratification and evolution during ventilation,but it does not change the prediction results at steady state.When the dimensionless pollution source intensity is larger than 1,the pollution source should be cleaned up or other ventilation methods should be used instead to improve IAQ.In addition,the comparisons between Model Ⅰ and Model Ⅱ on instantaneous pollutant concentration are significantly influenced by the pollution source intensity,and the actual pollutant concentration is more likely to be between the predicted values of Model Ⅰ and Model Ⅱ.To reduce pollutant concentration to a required level,the pollution source intensity should be in a certain range.The theoretical models as well as the necessary conditions for ventilation effectiveness obtained can be used for the ventilation optimization design of industrial buildings.
查看更多>>摘要:In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people's fast-paced lives,achieving maximum functionality with a very small footprint.However,due to the small space,human metabolic pollutant(such as CO2)is more likely to accumulate,and the air is not easily circulated.In this paper,a full-size experimental platform is set up with three types of ventilation modes to explore the exclusion efficiency of metabolic pollutants and the overall distribution of age of air under these ventilation modes.The conclusions showed that the mean values of metabolic pollutant exclusion rates for the different ventilation modalities varied very little across the spatial dimensions of the confined space but varied considerably in the area around the head.The double-side attached ventilation method was the most effective in removing human metabolic pollutants,especially in the head region(CN≥0.92),while the single-wall attached ventilation method had the best air exchange efficiency(η≥0.85).This suggests an inconsistent distribution of CO2 and age of air,which is contrary to general common sense.The conclusions of this paper can guide the design of ventilation for tiny sleeping spaces.
查看更多>>摘要:The morphology of urban areas plays a crucial role in determining solar potential,which directly affects photovoltaic capacity and the achievement of net-zero outcomes.This study focuses on the City of Melbourne to investigate the utilization of solar energy across different urban densities and proposes optimized morphologies.The analysis encompasses blocks with diverse population densities,examining medium and high-density areas.By utilizing a multi-objective genetic optimization approach,the urban morphology of these blocks is refined.The findings indicate that low-density blocks exhibit photovoltaic potential ranging from 1 to 6.6 times their total energy consumption.Medium and high-density blocks achieve photovoltaic potential levels approximately equivalent to 40%-85%of their overall energy consumption.Moreover,significant variations in photovoltaic potential are observed among different urban forms within medium and high-density blocks.An"elevated corners with central valley"prototype is proposed as an effective approach,enhancing the overall photovoltaic potential by approximately 14%.This study introduces novel analytical concepts,shedding light on the intricate relationship between urban morphologies and photovoltaic potential.
查看更多>>摘要:During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hinders normal usage.Fortunately,by transferring load data from similar buildings,it is possible to enhance forecasting accuracy.However,indiscriminately expanding all source domain data to the target domain is highly likely to result in negative transfer learning.This study explores the feasibility of utilizing similar buildings(source domains)in transfer learning by implementing and comparing two distinct forms of multi-source transfer learning.Firstly,this study focuses on the Higashita area in Kitakyushu City,Japan,as the research object.Four buildings that exhibit the highest similarity to the target buildings within this area were selected for analysis.Next,the two-stage TrAdaBoost.R2 algorithm is used for multi-source transfer learning,and its transfer effect is analyzed.Finally,the application effects of instance-based(IBMTL)and feature-based(FBMTL)multi-source transfer learning are compared,which explained the effect of the source domain data on the forecasting accuracy in different transfer modes.The results show that combining the two-stage TrAdaBoost.R2 algorithm with multi-source data can reduce the CV-RMSE by 7.23%compared to a single-source domain,and the accuracy improvement is significant.At the same time,multi-source transfer learning,which is based on instance,can better supplement the integrity of the target domain data and has a higher forecasting accuracy.Overall,IBMTL tends to retain effective data associations and FBMTL shows higher forecasting stability.The findings of this study,which include the verification of real-life algorithm application and source domain availability,can serve as a theoretical reference for implementing transfer learning in load forecasting.
查看更多>>摘要:Optimization for the multi-chiller system is an indispensable approach for the operation of highly efficient chiller plants.The optima obtained by model-based optimization algorithms are dependent on precise and solvable objective functions.The classical neural networks cannot provide convex input-output mappings despite capturing impressive nonlinear fitting capabilities,resulting in a reduction in the robustness of model-based optimization.In this paper,we leverage the input convex neural networks(ICNN)to identify the chiller model to construct a convex mapping between control variables and the objective function,which enables the NN-based OCL as a convex optimization problem and apply it to multi-chiller optimization for optimal chiller loading(OCL).Approximation performances are evaluated through a four-model comparison based on an experimental data set,and the statistical results show that,on the premise of retaining prior convexities,the proposed model depicts excellent approximation power for the data set,especially the unseen data.Finally,the ICNN model is applied to a typical OCL problem for a multi-chiller system and combined with three types of optimization strategies.Compared with conventional and meta-heuristic methods,the numerical results suggest that the gradient-based BFGS algorithm provides better energy-saving ratios facing consecutive cooling load inputs and an impressive convergence speed.
查看更多>>摘要:A poorly calibrated model undermines confidence in the effectiveness of building energy simulation,impeding the widespread application of advanced energy conservation measures(ECMs).Striking a balance between information-gathering efforts and achieving sufficient model credibility is crucial but often obscured by ambiguities.To address this gap,we model and calibrate a test bed with different levels of information(LOI).Beginning with an initial model based on building geometry(LOI 1),we progressively introduce additional information,including nameplate information(LOI 2),envelope conductivity(LOI 3),zone infiltration rate(LOI 4),AHU fan power(LOI 5),and HVAC data(LOI 6).The models are evaluated for accuracy,consistency,and the robustness of their predictions.Our results indicate that adding more information for calibration leads to improved data fit.However,this improvement is not uniform across all observed outputs due to identifiability issues.Furthermore,for energy-saving analysis,adding more information can significantly affect the projected energy savings by up to two times.Nevertheless,for ECM ranking,models that did not meet ASHRAE 14 accuracy thresholds can yield correct retrofit decisions.These findings underscore equifinality in modeling complex building systems.Clearly,predictive accuracy is not synonymous with model credibility.Therefore,to balance efforts in information-gathering and model reliability,it is crucial to(1)determine the minimum level of information required for calibration compatible with its intended purpose and(2)calibrate models with information closely linked to all outputs of interest,particularly when simultaneous accuracy for multiple outputs is necessary.