首页期刊导航|科学通报
期刊信息/Journal information
科学通报
科学通报

夏建白

旬刊

0023-074X

csb@scichina.org

010-64036120

100717

北京东城区东黄城根北街16号

科学通报/Journal Chinese Science BulletinCSCD北大核心CSTPCDEISCI
查看更多>>《科学通报》创刊于1950年,是中国科学院主办、中国科学杂志社承办的自然科学综合性学术刊物,报道自然科学各学科基础理论和应用研究方面具有创新性和和高水平的、具有重要意义的最新研究成果,要求文章的可读性强,能在一个比较宽范的学术领域产生深刻的影响。我们的目标是:成为国内外读者了解中国乃至世界范围的自然科学各研究领域最新成果的主要窗口之一。《科学通报》进入了国际上主要检索系统,如CA,EI,日本《科技速报》和美国科学信息研究所(ISI)的以下系统:Science Citation Index(SCI-CDE),SCISearch,Current Contents(PC&E)和Research Alert。
正式出版
收录年代

    阿秒光源前沿科学与应用

    付玉喜
    833-834页

    阿秒脉冲测量原理和技术研究进展

    赵昆高亦谈朱孝先许思源...
    835-846页
    查看更多>>摘要:阿秒脉冲由于极短的脉冲宽度和超高的时间分辨能力,在物理学、化学、生物学和医学等领域有着潜在应用.自诞生之日起,阿秒脉冲的时域极限不断突破,使得阿秒脉冲的测量成为一大研究热点.本文主要分为两个部分,第一部分回顾了阿秒脉冲与气体介质作用的脉冲测量技术的发展过程,简述了几种测量阿秒脉冲时域信息的实验原理、实验方案设计以及实验结果.第二部分介绍了从阿秒条纹相机中提取阿秒脉冲时域信息的理论反演算法,包括算法的原理和结构,并从计算时间和计算结果精度上对算法进行了比较.文章最后总结了阿秒脉冲测量技术在实验和理论上的困难与挑战,并展望了未来阿秒脉冲测量的发展方向.

    阿秒脉冲测量阿秒条纹相机阿秒条纹相机反演算法光电离

    阿秒激光脉冲的产生与操控

    兰鹏飞陆培祥
    847-855页
    查看更多>>摘要:随着激光技术的发展,激光的脉宽不断减小.21世纪初,研究者首次突破飞秒的界限,在实验室产生了孤立的阿秒脉冲,由此打开了阿秒科学的大门.目前最短的激光脉宽达到了43 as,这为超快光学测量带来了前所未有的时间分辨率,阿秒科学也成为近20年来超快光学领域最重要的成就之一.虽然少周期驱动光、偏振选通、双色光等多种方案已经被用于调控阿秒脉冲的产生,许多调控阿秒光源椭偏率的方法也得到了证实,但如何提升阿秒脉冲的能量及产生圆偏振阿秒脉冲仍然是当前研究的热点.

    阿秒脉冲高次谐波偏振控制少周期激光脉冲

    阿秒光源在材料领域的应用

    郝文杰翟燕妮张倩瑜赵继民...
    856-864页
    查看更多>>摘要:21世纪以来,阿秒(attosecond,1 as=10-18 s)技术从诞生逐渐走向快速发展,为我们带来了前所未有的时间分辨(time-resolved)探测能力.以往飞秒(1 fs=10-15 s)泵浦-探测(pump-probe)超快光谱技术被广泛应用于材料的超快动力学研究,其脉宽和光子能量可以很好地研究由外层电子决定的材料物性.阿秒技术的出现使我们有可能研究更快的物理过程以及由内层电子决定的物性.本文介绍阿秒瞬态吸收谱(attosecond transient absorption spectro-scopy)、阿秒时间分辨角分辨光电子能谱(attosecond time-resolved angular-resolved photoelectron spectroscopy)和中红外超快光谱(mid-infrared ultrafast spectroscopy)等三种超快泵浦-探测技术及其在材料领域的典型应用实例,并对阿秒光源在材料领域的应用前景进行展望.

    阿秒超快光谱泵浦-探测瞬态吸收谱角分辨光电子谱中红外

    基于固体等离子体的阿秒高次谐波产生理论与实验进展

    吴家其曾志男李儒新
    865-870页
    查看更多>>摘要:自从2001年首次产生并测量了阿秒(attosecond,1 as=10-18 s)脉冲之后,高次谐波和阿秒脉冲在原子分子物理、材料科学等领域得到了广泛的应用.但是,由于气体高次谐波方法产生的阿秒脉冲效率较低,阿秒脉冲能量受限,限制了阿秒时间动力学研究的探测方式(目前主要是IR(infrared)+XUV(extreme ultraviolet)泵浦/探测)及其在许多领域的应用.如何获得高亮度、大能量的阿秒脉冲一直是该领域的追求.高强度的相对论飞秒激光脉冲与固体密度等离子体相互作用,在高亮度、大能量高次谐波和阿秒脉冲产生上具有独特的优势,甚至可能获得远高于泵浦激光场强的谐波电场强度.本文对基于固体等离子体的阿秒高次谐波产生的物理机制和目前的实验研究进展作简要介绍.

    高次谐波阿秒脉冲相对论激光等离子体

    奇偶高次谐波光谱学研究进展

    车佳殷陈彦军
    871-877页
    查看更多>>摘要:不对称分子由于对称破缺在强激光场中会辐射奇次和偶次谐波.研究表明,奇偶谐波辐射在频域上具有显著不同的特性.通过建立奇偶谐波辐射理论模型,进一步的研究指出,奇偶谐波携带着系统的不同信息,可通过提取奇偶谐波各自的特征信息,整合反演出系统的全部信息.上述奇偶分辨的高次谐波光谱学研究思路和相关理论模型已被广泛地应用于不对称分子的超快探测过程中,例如,可以用于重构不对称分子轨道,探测极性分子核的动力学,标定不对称分子取向度,探测多中心分子结构等;还可以用于探测不对称分子的形状共振和电荷输运等.奇偶高次谐波光谱学的研究与发展对推动谐波辐射在阿秒科学和化学反应中的应用发挥着积极作用.

    奇偶谐波辐射不对称分子超快探测阿秒

    阿秒脉冲驱动激光发展现状及展望

    袁浩曹华保王虎山刘鑫...
    878-888页
    查看更多>>摘要:阿秒光源是21世纪新兴的光源,其由于短脉冲、宽光谱、高时空相干性、可调谐等特点而被广泛应用于多学科领域,可以同时从阿秒时间尺度和纳米空间尺度对微观超快过程进行观测.阿秒脉冲的产生机制与一般超快激光不同,目前较为成熟的途径是通过超快激光与气体作用的高次谐波极端非线性过程来获得,因此,阿秒脉冲产生从根本上依赖于驱动源的性能.本文全面分析了基于高次谐波原理的阿秒脉冲驱动源的特点及发展现状,并介绍了阿秒脉冲驱动源的发展趋势.

    阿秒后压缩光参量放大中红外高功率

    阿秒脉冲产生的技术原理及进展

    魏志义许思源江昱佼高亦谈...
    889-901页
    查看更多>>摘要:随着超短脉冲激光技术的快速发展,人们观察超快动力学的视野从飞秒领域跨入到阿秒领域.由于电子绕氢原子核转1圈的时间大约为1.5×10-16 s,即150 as,因此阿秒激光脉冲的出现为人类提供了打开原子内部动态世界大门的钥匙,成为21世纪激光物理与技术最重要的进展之一.经过多年的不断创新和突破,阿秒脉冲产生技术从最初只能用少周期飞秒脉冲作为驱动光源,已发展出多种空间及时间选通技术,所能产生的最短激光脉宽已达43 as.本文通过总结这些技术方法,介绍了产生阿秒激光脉冲的原理及主要进展.

    阿秒脉冲阿秒选通技术高次谐波阿秒脉冲压缩

    双色阿秒钟的原理和应用

    韩猛刘运全
    902-912页
    查看更多>>摘要:阿秒钟基于单色圆偏振光场中的角度-时间对应原理,是强场物理中具有阿秒时间分辨本领的重要工具.近年来,双色飞秒光场由于具有灵活的可操作性和丰富的多样性,逐渐发展为调控电子超快动力学的重要手段之一.将阿秒钟和双色光场相结合的双色阿秒钟得到了越来越广泛的关注,成为强场物理研究的前沿方向之一.本文将介绍两种双色阿秒钟方案.首先,基于同向旋转的双色圆偏振光场,提出并演示了一种全新的时间分辨的光电子干涉术,即双指针阿秒钟.利用该方案,提取了电离电子波包的相位信息和振幅信息,揭示了电子在势垒下的隧穿动力学.其次,提出并演示了一种改进型阿秒钟,在一束圆偏振飞秒激光场中加入另一束线偏振的倍频光来校准阿秒钟,使得测量隧穿时间所对应的光电子偏移角更加准确可靠.另外,我们在理论上证明了瞬时隧穿和Wigner延时隧穿这两种看似对立的隧穿图像可以被统一在同一个理论框架下(即强场近似理论)进行描述.对于改进型阿秒钟,这两种隧穿图像的理论结果都与实验结果相符合.

    强场电离阿秒钟双色光场隧穿时间

    多电子动力学的强场调控与阿秒探测

    赵增秀
    913-923页
    查看更多>>摘要:作为一种新型的超短极紫外/软X射线相干光源,阿秒脉冲推动了物质科学的新发展.它使得人们可以深入物质内部,对各种原子尺度的微观过程,以电子运动的自然时间尺度(1 as~10-18s)实现前所未有的时空分辨和超快调控.阿秒脉冲的产生和应用与强激光脉冲驱动的物质内电子亚周期的超快动力学密切相关.对其的研究,有助于在时域、相位、纠缠等方面理解电子关联如何影响物质性质和动力学,回答光是如何被原子、分子或者固体吸收的,光电离时间、隧穿时间、电子迁移时间是否存在等基本科学问题.虽然未来阿秒脉冲光源发展仍有待进一步增大光强和压缩脉宽,但是目前结合超强的激光脉冲和超短的阿秒光源,有可能在新的能量域、时间域、空间域实现电子动力学的强场调控和阿秒探测,为未来拍赫兹光电子学、阿秒瞬态光谱等新的物质科学与信息技术奠定基础.本文将回顾强场和超快物理在实验、理论、技术和应用上带来的推动,聚焦电子和多电子动力学的强场效应和时域探测,介绍部分相关领域的发展.

    阿秒脉冲高次谐波强场隧穿电离电子关联