首页期刊导航|雷达学报
期刊信息/Journal information
雷达学报
中国科学院电子学研究所 中国雷达行业协会
雷达学报

中国科学院电子学研究所 中国雷达行业协会

吴一戎

季刊

2095-283X

radars@mail.ie.ac.cn

010-58887062

100190

北京市海淀区北四环西路19号

雷达学报/Journal JOURNAL OF RADARSCSCD北大核心CSTPCD
查看更多>>《雷达学报》办刊宗旨为:坚持理论与实践相结合,学术与工程应用相结合,报道雷达领域最新科研成果,引导学科发展方向,推动理论和学术发展,促进科技成果转化为生产力,建设我国雷达领域高水平学术交流平台。 《雷达学报》定位为雷达领域的高水平学术性期刊。读者对象为国内外雷达学科领域的专家学者、科研人员、院校师生和专业工程技术人员等。
正式出版
收录年代

    全息凝视雷达系统技术与发展应用综述

    郭瑞张月田彪肖钰...
    389-411页
    查看更多>>摘要:全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势.

    数字阵列雷达全息凝视雷达全时空探测同时多功能多普勒分辨率

    基于强化学习的认知雷达目标跟踪波形挑选方法

    朱培坤梁菁罗子涵沈晓峰...
    412-424页
    查看更多>>摘要:认知雷达通过不断与环境互动并从经验中学习,根据获得的知识不断调整其波形、参数和照射策略,以在复杂多变的场景中实现稳健的目标跟踪,其波形设计在提高跟踪性能方面一直备受关注.该文提出了一种用于跟踪高机动目标的认知雷达波形选择框架,该框架考虑了恒定速度(CV)、恒定加速度(CA)和协同转弯(CT)模型的组合,在该框架的基础上设计了基于准则优化(CBO)和熵奖励Q学习(ERQL)方法进行最优波形选择.该方法将雷达与目标集成到一个闭环中,发射波形随目标状态的变化实时更新,从而达到对目标的最佳跟踪性能.数值结果表明,与CBO方法相比,所提出的ERQL方法大大减少了获取最优波形的处理时间,并实现了与CBO相近的跟踪性能,相比于固定参数(Fixed-P)方法,极大地提高了机动目标的跟踪精度.

    目标跟踪认知雷达波形挑选基于准则优化(CBO)熵奖励Q学习(ERQL)

    高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计

    李沐阳胡程王锐李卫东...
    425-440页
    查看更多>>摘要:迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全.昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑.传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量.新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度.但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准.针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制.最后,利用多频全极化雷达(X,Ku,Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性.

    全极化昆虫雷达极化信息极化校准参数反演体轴方向估计

    一种基于深度学习的SAR城市建筑区域叠掩精确检测方法

    田野丁赤飚张福博石民安...
    441-455页
    查看更多>>摘要:建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量.目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的丰富特征信息,导致现有叠掩检测算法的精确度无法满足城市3D SAR成像的要求.为此,该文结合Vision Transformer(ViT)模型和卷积神经网络(CNN)的优点,提出了一种基于深度学习的SAR城市建筑区域叠掩精确检测方法.ViT模型能够通过自注意力机制有效提取全局特征和远距离特征,同时CNN有着很强的局部特征提取能力.此外,该文所提方法还基于专家知识增加了用于挖掘通道间叠掩特征和干涉相位叠掩特征的模块,提高算法的准确率与鲁棒性,同时也能够有效地减轻模型在小样本数据集上的训练压力.最后在该文构建的机载阵列SAR数据集上测试,实验结果表明,该文所提算法检测准确率达到94%以上,显著高于其他叠掩检测算法.

    深度学习专家知识3DSAR成像建筑区域叠掩检测VisionTransformer模型

    雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集

    关键刘宁波王国庆丁昊...
    456-469页
    查看更多>>摘要:海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步.针对海上目标散射特性数据不足的问题,升级"雷达对海探测数据共享计划(SDRDSP)",扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持.后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持.

    雷达试验海上目标特性海杂波目标检测识别

    雷达与微波视觉分论坛暨第三期雷达学报大讲堂在北京举行

    封2,封3页