查看更多>>摘要:Copper,permalloy,cobalt,and silicon are the materials that have been widely utilised in magnetic devices.When the size of interest is down to the nanoscale,the inter-diffusion between certain materials becomes influential.This paper studies the nanoscale friction characteristics between frictional pairs with and without inter-diffusion properties through the atomic force microscope.The distinct evolution features of nanoscale friction force when inter-diffusion is involved are discovered experimentally,which is also confirmed through theoretical analysis.Firstly,through the thin film deposition method,four pairs of contact materials(Cu-Ni81Fe19,Si-Ni81Fe19,Cu-Co,Cu-Si)are designed for friction tests,in which diffusion occurs at the interface of Cu-Ni81Fe19 pair.Then,the effects of sliding velocity and loading force on the nano friction of each pair are measured.It is found that regardless of the diffusion phenomenon:(1)the adhesion force values exhibit a notable correlation to the values of the friction force;(2)the friction force in all four material pairs consistently increases with the growth of the normal loading force,although the growth rate may differ.In terms of the sliding velocity effect,the friction forces of immiscible materials(Si-Ni81Fe19,Cu-Co,and Cu-Si)are found to increase with the increasing sliding velocity.However,the friction force of Cu-Ni81Fe19,decreases with the increasing sliding velocity.Furthermore,a compositive friction model considering both the velocity and the normal force effect was proposed,which shows good agreement with the experimental results and explains the nano friction behaviour of both miscible and immiscible metals.
查看更多>>摘要:Fluid jet polishing(FJP)is a non-contact polishing technology that can fabricate free-form optical surfaces with sub-micron-level form accuracy and nano-level surface roughness,especially for hard and brittle materials.The surface generation model of FJP can be used to guide the determination and optimization of process parameters and is of great significance for understanding the evolution mechanism of surface microtopography.However,predictive models for the microscopic topography of polished surfaces are still lacking.This study established a macroscopic surface profile model for predicting 3D material removal characteristics and surface texture by combining the 3D computer fluid dynamics(CFD)simulation model and single-particle erosion mechanism.A fractal theory-based erosion model has been built to calculate the material removal caused by the erosion of a single abrasive particle on the rough surface;thus,it predicts the micro-topography and surface roughness of the polished samples.A series of polishing experiments were conducted to analyze the feasibility and accuracy of the model quantitatively and study the influence mechanism of process parameters on the material removal characteristics and surface quality.Results indicated that the models could well predict material removal and surface roughness.The prediction accuracy of the surface roughness Ra and maximum removal depth is better than 91.6%and 90%,respectively.It is also found that the material removal rate of FJP could reach 0.517 mm3/min,and the surface roughness convergence rate could reach 62.9%.
查看更多>>摘要:In this work,the advantage of Coulomb repulsion in the intermolecular forces experienced by molecules on the solid-liquid nanosized contact interface is taken,and the superior friction-reducing property of Cu3(PO4)2·3H2O(CuP)oil-based additives has been confirmed for titanium alloy.Three-dimensional(3D)CuP nanoflowers(CuP-Fs)with a strong capillary absorption effect are prepared to achieve the homogeneous mixing of solid CuP and lubricating oil.Lubrication by CuP-Fs additives for titanium alloy,friction coefficient(COF)can be reduced by 73.68%,and wear rate(WR)reduced by 99.69%.It is demonstrated that the extraordinary friction-reducing property is due to the repulsive solid-liquid interface with low viscous shear force originating from Coulomb repulsion between polar water molecules in CuP and non-polar oil molecules.However,any steric hindrance or connection between this repulsive solid-liquid interface will trigger the adhesion and increase the viscous shear force,for example,dispersant,hydrogen bondings,and shaky adsorbed water molecules.Besides,the lamellar thickness of CuP and the molecular size of lubricant both have a great influence on tribological properties.Here the lubrication mechanism based on interface Coulomb repulsion is proposed that may help broaden the scope of the exploration in low-friction nanomaterial design and new lubricant systems.
查看更多>>摘要:The outstanding tribological performance of transition metal dichalcogenides(TMDs)is attributed to their unique sandwich microstructure and low interlayer shear stress.This advantageous structure allows TMDs to demonstrate exceptional friction reduction properties.Furthermore,the incorporation of TMDs and amorphous carbon(a-C)in multi-layer structures shows excellent potential for further enhancing tribological and anti-oxidation properties.Amorphous carbon,known for its high ductility,chemical inertness,and excellent wear resistance,significantly contributes to the overall performance of these multi-layer coatings.To gain an in-depth understanding of the tribological mechanism and evolution of TMDs'multi-layer coatings,a dual in-situ analysis was carried out using a tribometer equipped with a 3D laser microscope and a Raman spectrometer.This innovative approach allowed for a comprehensive evolution of the tribological,topographical,and tribochemical characteristics of both single-layer WS2 and multi-layer WS2/C coatings in real time.The findings from the dual in-situ tribotest revealed distinct failure characteristics between the single-layer WS2 coating and the multi-layer WS2/C coating.The single-layer WS2 coating predominantly experienced failure due to mechanical removal,whereas a combination of mechanical removal and tribochemistry primarily influenced the failure of the multi-layer WS2/C coating.The tribological evolution process of these two coatings can be classified into four stages on the basis of their tribological behavior:the running-in stage,stable friction stage,re-deposition stage,and lubrication failure stage.Each stage represents a distinct phase in the tribological behavior of the coatings and contributes to our understanding of their behavior during sliding.
Paul REICHLEJakob BARZGeorg UMLAUFGünter E.M.TOVAR...
1599-1617页
查看更多>>摘要:To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.