首页期刊导航|煤炭学报(英文版)
期刊信息/Journal information
煤炭学报(英文版)
煤炭学报(英文版)

潘惠正

季刊

1006-9097

010-84262930

100013

北京和平里煤炭科学研究总院

煤炭学报(英文版)/Journal Journal of Coal Science & Engineering(China)CSCDCSTPCD
查看更多>>本刊是中国煤炭学会主办的刊物,是向国内外公开发行的英文版煤炭科学技术方面的综合性学术刊物,主要刊载煤田地质与勘探、煤矿开采、矿山测量、矿进建设、煤矿安全、煤矿机械工程、煤矿电气工程、煤炭加工利用、煤矿环境保护等方面的科学研究成果论著和学术论文,以及煤矿生 ......
正式出版
收录年代

    Gas drainage from different mine areas:optimal placement of drainage systems for deep coal seams with high gas emissions

    Ping LuPing LiJian ChenChuijin Zhang...
    84-90页
    查看更多>>摘要:The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable for borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m3/min with an average flow of 69.1 m3/min at an average drainage concentration of nearly 85%. After the Y-type method was adopted, the concentration of gas in the return air was 0.15%–0.64%, averaging 0.39%with a ventilation rate of 2100–2750 m3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue.

    Experimental investigation into stress-relief characteristics with upward large height and upward mining under hard thick roof

    Ke YangXiang HeLitong DouWenjun Liu...
    91-96页
    查看更多>>摘要:According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan’er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3?–4? below the hard thick strata group, and by 13?–19? above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.