查看更多>>摘要:Powered by an inexhaustible supply of solar energy,photoelectrochemical(PEC)nitrogen reduction reaction(NRR)provides an ideal solution for the synthesis of green ammonia(NH3).Although great efforts have been made in the past decades,there are still significant challenges in increasing the NH3 yields of the PEC-NRR devices.In addition to the issues of low activity and selectivity similar to electrochemical NRR,the progress of PEC-NRR is also impeded by the limited increase in NH3 yields as the electrode is enlarged.Here,we propose an editable electrode design strategy that parallels unit photo-electrodes to achieve a linear increase in NH3 yields with electrode active area.We demonstrate that the editable electrode design strategy minimizes the electrode charge transfer resistance,allowing more photo-generated carriers to reach the electrode surface and promote the catalytic reaction.We believe that this editable electrode design strategy provides an avenue to achieve sustainable PEC NH3 production.
查看更多>>摘要:Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO2/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable & switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices.
查看更多>>摘要:Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules,although few exceptions have been acquired using two-dimensional(2D)inorganic nanosheets.Herein,with a systematic study on the gelation behavior of carbon-based OD quantum dots,1D nanotubes,and 3D fullerenes,we find that acidified 1D carbon nanotubes(CNTs)can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials.The as-prepared CNT gels exhibit not only a pH-or photothermal-triggered mechanical and tribological adaptivity,which allows them to simulate the behavior of sea cucumbers,peacock mantis shrimps,and mammalian muscles or cortical bones,but also a unique damping property that is similar to spider's cuticular pad.Their high elasticity,effective lubrication,excellent biocompatibility,and controllable friction and wear also allow them to function as a new type of smart lubricants,whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared(NIR)light irradiations,free of any toxic and flammable base oils or additives.
查看更多>>摘要:Oxide-metal based nanocomposite thin films have attracted great interests owing to their unique anisotropic structure and physical properties.A wide range of Au-based oxide-metal nanocomposites have been demonstrated,while other metal systems are scarce due to the challenges in the initial nucleation and growth as well as possible interdiffusions of the metallic nanopillars.In this work,a unique anodic aluminum oxide(AAO)template was used to grow a thin Co seed layer and the following self-assembled metal-oxide(Co-BaTiO3)vertically aligned nanocomposite thin film layer.The AAO template allows the uniform growth of Co-seeds and successfully deposition of highly ordered Co pillars(with diameter<5 nm and interval between pillars<10 nm)inside the oxide matrix.Significant magnetic anisotropy and strong magneto-optical coupling properties have been observed.A thin Au-BaTiO3 template was also later introduced for further enhanced nucleation and ordered growth of the Co-nanopillars.Taking the advantage of such a unique nanostructure,a large out-of-plane(OP)coercive field(Hc)of~5000 Oe has been achieved,making the nanocomposite an ideal candidate for high density perpendicular magnetic tunneling junction(p-MTJ).A strong polar magneto-optical Kerr effect(MOKE)has also been observed which inspires a novel optical-based reading method of the MTJ states.
查看更多>>摘要:Considering the tremendous applications and purification requirement of acetylene(C2H2),seeking appropriate adsorbents with high capacity and selectivity is a vital task and remains an enduring challenge.Herein,we designed and synthesized a robust three-dimensional(3D)indium-organic framework([(Me)2NH2][ln(L6)0.5(IPA)0.5]·DMA·2H2O(ln-L6-IPA,DMA=dimethylammonium,IPA=isopropyl alcohol))featuring two types of one-dimensional(1D)tubular channels.The activated In-L6-IPA displayed high loading for C2H2(104.4 cm3·g-1,the second highest value among all reported indium-based metal-organic frameworks(MOFs))and simultaneously selective adsorption for C2H2 over CO2,C2H6,and ethylene(C2H4)at 298 K under 100 kPa.Molecular modelling revealed that the porous wall of In-L6-IPA provides more and stronger multiple interactions for C2H2 than CO2,C2H6,and C2H4 containing C-H…TT,C-H…O,and O…TT interactions.Breakthrough experiments validated the actual separation ability for various ratios of binary C2H2/C2H4 and C2H2/CO2 mixtures as well as equimolar ternary C2H2/C2H4/CO2 and C2H2/C2H4/C2H6 mixtures with excellent reusability.
查看更多>>摘要:Two-dimensional(2D)materials have attracted a great deal of research interest because of their unique electrical,magnetic,optical,mechanical,and catalytic properties for various applications.To date,however,it is still difficult to fabricate most functional oxides as 2D materials unless they have a layered structure.Herein,we report a one-step universal strategy for preparing versatile non-layered oxide nanosheets by directly annealing the mixture of metal nitrate and dimethyl imidazole(2-MI).The 2-MI plays the key role for 2D oxides since 2-MI owns a very low molten point and sublimation temperature,in which its molten liquid can coordinate with metal ions,forming a metal-organic framework,and easily puffing by its gas molecules.A total of 17 materials were prepared by this strategy,including non-layered metal oxide nanosheets as well as metal/metal oxide loaded nitrogen-doped carbon nanosheets.The as-prepared cobalt particle-loaded nitrogen-doped carbon nanosheets(Co@N/C)exhibit remarkable bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalytic activity and durability.Besides,the Zn-air battery utilizing a Co@N/C catalyst exhibits high power density of 174.3 mW·cm-2.This facile strategy opens up a new way for large-scale synthesis of 2D oxides that holds great potential to push 2D oxides for practical applications.
查看更多>>摘要:Polymer composite fibers with superior properties such as excellent combined strength and toughness and biocompatibility can be used in high-tech applications of braided protective devices and smart wearable,however the research of high-performance polymer composite fiber remains in the infant stage.Here we present a strategy to produce strong and tough anisotropic polymer nanocomposite fibers with orientedly aligned salt rods using mechanical stretching-assisted salting-out treatment.The prepared nanocomposite fibers have a tensile strength of up to 786±2.7 MPa and an elongation at break of 81%,and the anisotropic fibers exhibit good transmission of mechanical vibration in the longitudinal direction with high resolution.During the fabrication process,the salt builds up into oriented rods during the directional salting process,and the polymer is confined to the 150 nm domain between the rods after the solvent is completely evaporated,giving the nanocomposite fibers superior mechanical properties.The presented strategy can be applied to the continuous mass production of nanocomposite fibers and is also generalizable to other polymer nanocomposites,which could extend the applicability of nanocomposite fibers to conditions involving more demanding mechanical loading and mechanical vibration transmission.
查看更多>>摘要:Integrated micro and nanostructures,heterogeneous components,defects,and interfaces is the way to develop high-performance microwave absorbing materials.However,there still needs to be more precise experimental routes and effective validation.In this work,by a continuous process of vacuum sintering,hydrothermal,and carbon thermal reduction,magnetic FeCo nanoparticles were successfully embedded on the hollow double-shell mesoporous SiC@C surface,thus solving the challenges of a single component loss mechanism.The hollow double-shell nanostructure introduces air to enhance impedance matching while significantly reducing the density of the material.The extensive defects and heterogeneous grain boundaries effectively enhance the polarization loss capacity.The magnetic loss mechanism introduced by the magnetic particles effectively improves the impedance matching properties of the material.The synergy of these multiple advantages has enabled the SCFC2-8(here SiC@C@FeCo is abbreviated to SCFC,2 represents the initial metal ion content,and 8 represents the hydrothermal time)sample to achieve an adequate absorption bandwidth of 6.09 GHz at 2.0 mm.With a minimum reflection loss of-60.56 dB,the absorption bandwidth can cover the entire C,X,and Ku bands by adjusting the matching thickness(1.3-4.0 mm).This work provides a valuable paradigm for the deeper exploitation of microwave absorption potential and guides the development of other high-performance materials.
查看更多>>摘要:Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior.Despite the progress achieved,a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable.Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating.The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials,causing the polar solvent to be heated,vaporized,and away from the pores of porous materials.The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores,followed by further reduction,resulting in the complete encapsulation of nanoparticles.A series of metal nanoparticles@porous materials,ranging from metal-organic frameworks(MOFs)to zeolites,are successfully prepared by this method and show excellent size selectivity in catalytic reactions.
查看更多>>摘要:Ti2C quantum dots(QDs)with rich surface functional groups have been synthesized using a hydrothermal method,and used to detect tetracycline(Tc)based on enhanced fluorescence.The interaction between the surface functional groups of Ti2C QDs and Tc enhanced the fluorescence of Tc at 514 nm,which is used to detect Tc quickly and accurately.Under optimal conditions,the fluorescence intensity was linear to the concentration of Tc in the range of 50.0-30.0 μM,with a detection limit of 21.6 nM.Furthermore,the Tc-Ti2C QDs detection system was evaluated for detection of Tc in milk and artificial urine.This study demonstrates a new and simple strategy for Tc detection,which is important for food safety and human health.