查看更多>>摘要:冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力.然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力.为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD(soil and plant analyzer development,SPAD)值.分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型.结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响.在灌浆期,最佳植被指数双峰冠层植被指数DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866.对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数NPQI(normalized phaeophytinization index)与氮含量决定系数R2=0.677.施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性.结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了 1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254降低到0.214,抽穗期的NRMSE提升最大,从0.201降低到0.128.对茎秆氮含量,全生育期的NRMSE从0.443降低到0.400,抽穗期的NRMSE变化最大,从0.323降低到0.268.在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳.研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度.