首页期刊导航|农业机械学报
期刊信息/Journal information
农业机械学报
中国农业机械学会 中国农业机械化科学研究院
农业机械学报

中国农业机械学会 中国农业机械化科学研究院

任露泉

月刊

1000-1298

njxb@caams.org.cn

010-64882610,64882231

100083

北京德外北沙滩1号6信箱

农业机械学报/Journal Transactions of the Chinese Society for Agricultural MachineryCSCD北大核心CSTPCDEI
查看更多>>本刊是由中国科协主管、中国农业机械学会和中国农业机械化科学研究院主办的国家级学术期刊,农业工程类中文核心期刊,美国工程信息公司(EI)收录期刊。主要刊登农业机械、农业工程、农用动力和能源、农产品及食品加工机械、农机化以及有关边缘学科的基础理论、设计制造、材料工艺、测试仪器与手段的研究成果及发展动向,反映学科最新研究成果和学术水平。同时还将及时提供中国农业机械学会举办的国内外学术活动信息,可供农机乃至机械行业中、高级技术人员、大专院校师生及科研单位的有关人员阅读参考。
正式出版
收录年代

    基于RDN-YOLO的自然环境下水稻病害识别模型研究

    廖娟刘凯旋杨玉青严从宽...
    233-242页
    查看更多>>摘要:针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO).以YOLO v5为基本框架,在主干网络的特征提取阶段嵌入跨阶段部分网络融合模块(C2f),增强模型对病害特征的感知能力,并引入空间深度转换卷积(SPDConv),扩展模型的感受野,进一步提升模型对小病斑特征提取能力;在颈部网络嵌入SPDConv结构,并利用轻量级卷积GsConv替换部分标准卷积,提高颈部网络对病害部位的定位和类别信息预测的准确性及推理速度;以穗瘟病、叶瘟病、胡麻斑病、稻曲病和白枯病5种常见水稻病害为研究对象,在自然环境下采集水稻病害图像,制作水稻病害数据集,进行模型训练与测试.实验结果表明,本文模型病害检测精确率高达94.2%,平均精度均值达93.5%,模型参数量为8.1 MB;与YOLO v5、Faster R-CNN、YOLO v7、YOLO v8模型相比,模型参数量略大于YOLO v5,但平均精度均值最高约高12.2个百分点,在一定程度上减轻模型复杂度的同时获得良好的水稻病害识别效果.

    水稻病害识别YOLOv5跨阶段部分网络融合模块空间深度转换卷积轻量化

    基于Self-Attention-BiLSTM网络的西瓜种苗叶片氮磷钾含量高光谱检测方法

    徐胜勇刘政义黄远曾雨...
    243-252页
    查看更多>>摘要:元素含量无损检测技术可以为植物生长发育的环境精准调控提供关键实时数据.以西瓜苗为例,提出了一种基于图谱特征融合的氮磷钾含量深度学习检测方法.首先,使用高光谱仪拍摄西瓜苗叶片的高光谱图像,使用连续流动化学分析仪测定叶片的3种元素含量.然后,采用基线偏移校正(BOC)叠加高斯平滑滤波(GF)的光谱预处理方法和随机森林算法(RF)建立预测模型,基于竞争性自适应重加权采样(CARS)和连续投影算法(SPA)2种算法初步筛选出特征波长,再综合考虑波长数和建模精度设计了一种最优波长评价方法,将波长数进一步减少到3~4个.最后,提取使用U-Net网络分割的彩色图像颜色和纹理特征,和光谱反射率特征一起作为输入,基于自注意力机制-双向长短时记忆(Self-Attention-BiLSTM)网络构建了 3种元素含量的预测模型.实验结果表明,氮磷钾含量预测的R2分别为0.961、0.954、0.958,RMSE分别为0.294%、0.262%、0.196%,实现了很好的建模效果.使用该模型对另2个品种西瓜进行测试,R2超过0.899、RMSE小于0.498%,表明该模型具有很好的泛化性.该高光谱建模方法使用少量波长光谱即实现了高精度检测,在精度和效率上达成了很好的平衡,为后续便携式高光谱检测装备开发奠定了理论基础.

    西瓜苗叶片元素含量无损检测自注意力机制双向长短时记忆网络高光谱

    基于FSLYOLO v8n的玉米籽粒收获质量在线检测方法研究

    张蔚然杜岳峰栗晓宇刘磊...
    253-265页
    查看更多>>摘要:玉米籽粒破碎率和含杂率是评价玉米收获质量的关键指标.针对当前玉米籽粒直收机缺少适用于复杂田间作业环境的收获质量在线检测方法的问题,提出一种适用于小目标、多数量检测目标的玉米籽粒破碎率、含杂率轻量化检测方法.首先,根据图像中完整籽粒、破碎籽粒、玉米芯和玉米叶个体数量与个体质量的关系建立数量-质量回归模型,提出了籽粒破碎率和含杂率评估方法.其次,针对籽粒及杂质大小相近,检测物数量多,检测物面积小的特点,提出一种改进的FSLYOLO v8n算法.算法通过FasterBlock模块和无参数注意力机制SimAM改进主干网络结构,并通过使用共享卷积结合Scale模块对检测头进行改进.此外,使用SlidLoss函数替代YOLO v8n的原类别分类损失函数.FSLYOLO v8n模型的mAP@50为97.46%、帧速率为186.4f/s,与YOLO v8n相比提高6.35%和45 f/s,且网络参数量、浮点运算量分别压缩到YOLO v8n的66.50%、64.63%,模型内存占用量仅为4.0 MB,其性能优于目前常用的轻量化模型.台架试验结果表明,提出的检测方法能够精准检测玉米籽粒破碎和含杂情况,检测准确率高达95.33%和96.15%.将改进后的模型部署在Jetson TX2开发板上,配合检测装置安装到玉米联合收获机上开展田间试验,结果表明,模型能够精准区分籽粒和杂质,满足田间工作需求.

    玉米籽粒直收破碎率含杂率在线检测FSLYOLOv8n

    基于EnlightenGAN图像增强的自然场景下苹果检测方法

    宋怀波杨涵茹苏晓薇周昱宏...
    266-279页
    查看更多>>摘要:自然光照下阴影会降低采摘机器人视觉系统对苹果目标的准确感知能力,导致采摘效率低.本研究采用EnlightenGAN算法进行图像增强,以实现阴影的去除和苹果目标检测精度的提升.首先通过图像光照归一化处理得到自正则化注意力图,达到图像阴影检测的目的,再采用注意力引导的U-Net作为生成器骨干网络得到增强后的图像,然后通过全局-局部判别器来比对图像信息,最终在生成器和判别器的对抗中达到图像质量增强的效果.为了进一步检验该方法的阴影去除效果,分别采用EnlightenGAN、Zero_DCE、Adaptive_GAMMA、RUAS等算法在MinneApple公共数据集上进行试验验证.结果表明,EnlightenGAN算法均方误差较Zero_DCE、Adaptive_GAMMA、RUAS算法分别降低19.21%、59.47%、67.42%,峰值信噪比增加6.26%、34.55%、47.27%,结构相似度提高2.99%、23.21%、68.29%.同时,在对果园拍摄的苹果图像进行标注后,将其送入YOLO v5m目标检测网络进行苹果检测训练.并对EnlightenGAN算法增强前后的苹果图像进行了测试,图像增强前后检测精确率分别为97.38%、98.37%,召回率分别为74.74%、91.37%,F1值分别为84%、94%,精确率、召回率和F1值分别提升1.02%、22.25%、11.90%.为证明模型有效性,对不同数据集进行了试验,结果表明EnlightenGAN算法增强后的目标检测精确率、召回率和Fl值较无增强算法及Zero_DCE、Adaptive_GAMMA、RUAS算法有显著提升.由此可知,将EnlightenGAN算法应用于苹果采摘机器人的视觉系统,可以有效克服果园图像光照不均以及存在阴影的影响,提升果实目标检测性能.该研究可为自然条件下复杂光照环境中的果实检测提供借鉴.

    苹果目标检测图像增强阴影去除EnlightenGANYOLOv5m

    基于改进YOLO v5的复杂环境下柑橘目标精准检测与定位方法

    李丽梁继元张云峰张官明...
    280-290页
    查看更多>>摘要:针对自然环境下柑橘果实机械化采收作业环境复杂和果实状态多样等情况,提出了一种多通道信息融合网络——YOLO v5-citrus,以解决柑橘果实识别精准度低、果实分类模糊和定位精准度低等难题.将不同的柑橘目标通过不同遮挡条件分为"可采摘"和"难采摘"两类,这种分类策略可指导机器人在真实果园中顺序摘取,提高采摘效率并减少机器人本体和末端执行器损坏率.YOLO v5-citrus中,在颈部网络插入多通道信息融合模块,对柑橘的深浅特征信息进行处理,提高柑橘采摘状态识别精度,同时修改颈部网络拼接方法,针对目标柑橘大小进行识别,训练后在识别部分嵌入聚类算法模块,将训练部分识别模糊的柑橘目标进行最后区分.识别后进行深度图像和彩色图像的像素对齐,并通过坐标系转换获取柑橘目标三维坐标.在使用多种增强技术处理的数据集中,YOLO v5-citrus比原始YOLO v5在平均精度均值和精确率上分别提高2.8个百分点与3.7个百分点,表现出更优异的泛化能力.与YOLO v7和YOLO v8等其他主流网络架构相比较,保持了更高的检测精度和更快的检测速度.通过真实果园的检测与定位试验,得到柑橘目标的三维坐标识别定位系统的定位误差为(1.97 mm,0.36 mm,9.63 mm),满足末端执行器的抓取条件.试验结果表明,该模型具有较强的鲁棒性,满足复杂环境下柑橘状态识别要求,可为柑橘园机械采收设备提供技术支持.

    柑橘采摘机器人目标检测状态区分三维坐标获取复杂环境YOLOv5

    基于轻量化YOLO v8s-GD的自然环境下百香果快速检测模型

    罗志聪何陈涛陈登捷李鹏博...
    291-300页
    查看更多>>摘要:为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD).使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融合能力和模型泛化能力;通过基于层自适应幅度的剪枝(LAMP)修剪模型,损失一定精度换取减小模型体积,减少模型参数量,以实现在嵌入式设备上快速检测;运用知识蒸馏学习策略弥补因剪枝而损失的检测精度,提高模型检测性能.实验结果表明,对于自然环境下采集的百香果数据集,改进后模型参数量和内存占用量相比原YOLO v8s基线模型分别降低63.88%和62.10%,精确率(Precision)和平均精度(AP)相较于原模型分别提高0.9、2.3个百分点,优于其他对比模型.在Jetson Nano和Jetson Tx2嵌入式设备上实时检测帧率(FPS)分别为5.78、19.38 f/s,为原模型的1.93、1.24倍.因此,本文提出的改进后模型能够有效检测复杂环境下百香果目标,为实际场景中百香果自动采摘等移动端检测设备部署和应用提供理论和技术支持.

    百香果YOLOv8s轻量化检测模型聚集和分发机制

    基于少量标注样本的茶芽目标检测YSVD-Tea算法

    郑子秋宋彦陈霖张航...
    301-311页
    查看更多>>摘要:构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要.本文提出了 YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构.通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的.在3种不同数量的数据集上分别进行了训练和验证.在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点.对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%.在数量最大的数据集上,YOLOX算法精确率、召回率、Fl值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高.YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务.

    茶芽目标检测奇异值分解少量样本遗传算法YOLOX

    非接触式笼养蛋鸡核心体温检测方法

    严煜盛哲雅谷月衡一帆...
    312-321页
    查看更多>>摘要:针对笼养条件下蛋鸡核心温度测量工作效率低下的问题,提出了一种利用红外热图像结合深度学习的蛋鸡核心温度检测方法.首先通过采集172只蛋鸡的10 994幅红外热图像制作数据集,利用目标检测网络YOLO v8s提取作为感兴趣区域(Region of interest,ROI)的鸡脸图像;再利用改进的深度卷积神经网络对提取的蛋鸡ROI图像以及实时采集的蛋鸡泄殖腔温度进行回归预测.实验显示,目标检测算法的检测准确率达到99.38%,平均精度均值达到99.9%,召回率达到99.87%,3项评价指标均高于YOLO v4s、YOLO v5s、YOLO v7、YOLOX-s目标检测算法;在深度卷积神经网络算法上,同时将 MobileNetV3、GhostNet、ShuffleNetV2、RegNet、ConvNeXt、Res2Net 以及MobileVIT共7种分类模型修改为回归模型,利用蛋鸡ROI图像进行训练,其中,Res2Net模型对蛋鸡核心体温估测拟合效果最好,在测试集上估测的决定系数R2为0.956 5、调整后决定系数R2adj为0.956 31,均高于其他回归模型;为进一步提高预测精度,在Res2Net50回归模型的Bottle2block结构之后分别插入SE(Squeeze-and-excitation)模块、CBAM(Convolutional block attention module)模块、CA(Coordinate attention)模块、ECA(Efficient channel attention)模块,其中利用CA模块改进后的算法在测试集上的R2为0.973 64、R2adj为0.973 52,均高于其他改进方法;利用目标检测网络和回归网络搭建蛋鸡核心体温估测模型,对9只蛋鸡进行体温估测试验,结果显示ROI均能完整找出,且估测体温平均绝对误差(Mean absolute error,MAE)为0.153℃.因此,本研究提出的目标检测+深度神经网络模型为红外热图像下蛋鸡核心温度预测提供了较好的自动化检测方法.

    笼养蛋鸡核心体温YOLOv8s-Res2Net50红外热成像

    基于改进YOLO v8n-seg的羊只实例分割方法

    王福顺王旺孙小华王超...
    322-332页
    查看更多>>摘要:羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提.针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-seg的羊只实例分割方法.以YOLO v8n-seg网络作为基础模型进行羊只个体分割任务,首先,引入Large separable kernel attention模块以增强模型对实例重要特征信息的捕捉能力,提高特征的代表性及模型的鲁棒性;其次,采用超实时语义分割模型DWR-Seg中的Dilation-wise residual模块替换C2f中的Bottleneck模块,以优化模型对网络高层特征的提取能力,扩展模型感受野,增强上下文语义之间的联系,生成带有丰富特征信息的新特征图;最后,引用Dilated reparam block模块对C2f进行二次改进,多次融合从网络高层提取到的特征信息,增强模型对特征的理解能力.试验结果表明,改进后的YOLO v8n-LDD-seg对羊只实例的平均分割精度 mAP50达到92.08%,mAP50∶90达到 66.54%,相较于 YOLO v8n-seg,分别提升 3.06、3.96 个百分点.YOLO v8n-LDD-seg有效提高了羊只个体检测精度,提升了羊只实例分割效果,为复杂养殖环境下羊只实例检测和分割提供了技术支持.

    羊只个体检测实例分割改进YOLOv8n-LDD-seg网络

    基于文本数据增强的中文水稻育种问句命名实体识别

    牛培宇侯琛
    333-343页
    查看更多>>摘要:针对现有水稻育种问答系统存在数据管理水平低、知识粒度大,水稻育种领域缺乏用于命名实体识别的标注数据、人工标注成本高等问题,提出了一种基于文本数据增强的方法来识别水稻育种问句的命名实体,通过构建水稻育种知识图谱,对水稻育种问句中的大类命名实体进行分类,从而增强实体边界,降低知识粒度.针对水稻育种数据标注成本高导致命名实体识别性能不佳的难点,通过在BERT-BILSTM-CRF模型中引入数据增强层,提出了DA-BERT-BILSTM-CRF模型.实验以标注的水稻育种问句为训练数据,将所提出的模型与其他基线模型进行比较.结果表明,本文方法在水稻育种问句中命名实体识别的单类别识别任务和整体识别任务上均优于其他方法,其中单类别识别精确率达到94.26%,F1值达到93.32%;整体识别精确率达到93.86%,F1值达到93.34%.

    水稻育种问答系统命名实体识别文本数据增强知识图谱