首页期刊导航|气候变化研究进展(英文版)
期刊信息/Journal information
气候变化研究进展(英文版)
国家气候中心
气候变化研究进展(英文版)

国家气候中心

秦大河

季刊

1674-9278

accre@cma.gov.cn

010-68400096

100081

北京市中关村南大街46号国家气候中心

气候变化研究进展(英文版)/Journal Advances in Climate Change ResearchCSCD北大核心SCI
查看更多>>本刊是我国在气候变化研究领域内自然科学和社会科学相结合的综合性学术期刊,其目的是使我国以自然科学和社会科学相结合为特色的气候变化研究在国际上占有一席之地。主要刊登与气候变化相关的跨学科研究进展,包括国内外关于气候变化科学事实、影响及对策研究最新成果。本刊旨在促进气候变化研究的发展,并推动研究成果在经济社会可持续发展、适应和减缓气候变化对策制定、气候政策与环境外交谈判、资源保护和开发等方面的应用。
正式出版
收录年代

    The historical to future linkage of Arctic amplification on extreme precipitation over the Northern Hemisphere using CMIP5 and CMIP6 models

    Jun LIUXiao-Fan WANGDong-You WUXin WANG...
    573-583页
    查看更多>>摘要:Arctic warming played a dominant role in recent occurrences of extreme events over the Northern Hemisphere,but climate models cannot accurately simulate the relationship.Here a significant positive correlation(0.33-0.95)between extreme precipitation and Arctic amplification(AA)is found using observations and CMIP5/6 multi-model ensembles.However,CMIP6 models are superior to CMIP5 models in simulating the temporal evolution of extreme precipitation and A A.According to 14 optimal CMIP6 models,the maximum latitude of planetary waves and the strength of Northern Hemisphere annular mode(NAM)will increase with increasing AA,contributing to increased extreme precipitation over the Northern Hemisphere.Under the Shared Socioeconomic Pathway SSP5-8.5,AA is expected to increase by 0.85 ℃ per decade while the maximum latitude of planetary waves will increase by 2.82° per decade.Additionally,the amplitude of the NAM will increase by 0.21 hPa per decade,contributing to a rise in extreme precipitation of 1.17%per decade for R95pTOT and 0.86%per decade for R99pTOT by 2100.

    An assessment of the CMIP6 performance in simulating Arctic sea ice volume flux via Fram Strait

    Hui-Yan KUANGShao-Zhe SUNYu-Fang YEShao-Yin WANG...
    584-595页
    查看更多>>摘要:Numerical models serve as an essential tool to investigate the causes and effects of Arctic sea ice changes.Evaluating the simulation capabilities of the most recent CMIP6 models in sea ice volume flux provides references for model applications and improvements.Meanwhile,reliable long-term simulation results of the ice volume flux contribute to a deeper understanding of the sea ice response to global climate change.In this study,the sea ice volume flux through six Arctic gateways over the past four decades(1979-2014)were estimated in combination of satellite observations of sea ice concentration(SIC)and sea ice motion(SIM)as well as the Pan-Arctic Ice-Ocean Modeling and Assimilation System(PIOMAS)reanalysis sea ice thickness(SIT)data.The simulation capability of 17 CMIP6 historical models for the volume flux through Fram Strait were quantitatively assessed.Sea ice volume flux simulated from the ensemble mean of 17 CMIP6 models demonstrates better performance than that from the individual model,yet IPSL-CM6A-LR and EC-Earth3-Veg-LR outperform the ensemble mean in the annual volume flux,with Taylor scores of 0.86 and 0.50,respectively.CMIP6 models display relatively robust capability in simulating the seasonal variations of volume flux.Among them,CESM2-WACCM performs the best,with a correlation coefficient of 0.96 and a Taylor score of 0.88.Conversely,NESM3 demonstrates the largest devi-ation from the observation/reanaly sis data,with the lowest Taylor score of 0.16.The variability of sea ice volume flux is primarily influenced by SIM and SIT,followed by SIC.The extreme large sea ice export through Fram Strait is linked to the occurrence of anomalously low air temperatures,which in turn promote increased SIC and SIT in the corresponding region.Moreover,the intensified activity of Arctic cyclones and Arctic dipole anomaly could boost the southward sea ice velocity through Fram Strait,which further enhance the sea ice outflow.

    Changes of the trace metals in ice core during 1915-2016 in coastal eastern Antarctica

    Jing-Wen LIUChuan-Jin LIGui-Tao SHIYan LIU...
    596-608页
    查看更多>>摘要:Antarctic trace metal records provide important information for grasping the influence of human activities on the environment over the last centuries.The CA2016-75 ice core is located along the East Antarctic Zhongshan Station-Dome A,enhances the record of metals research in the East Antarctic region,and its high-resolution supplies data support for the study of high-frequency climatic drivers and the effect of human activities on the Antarctic environment.A thorough dataset on seven trace metals(Al,Fe,Mn,Cu,Zn,Ba and Pb)in a coastal ice core in eastern Antarctica during the previous 102 years(1915-2016)is presented in this study.Pb has the lowest concentration(9.51±20.95 pg g-1),and Ba has the highest concentration(36.57±51.35 ng g-1).Notable variations are observed between the pre-1968 AD and post-1968 AD phases for Mn,Zn and Ba.The abrupt,remarkable increase in the concentrations coincided with the change of metal smelting production in the southern hemisphere.In addition to this,it may also be related to local Antarctic scientific research activities.Al and Fe,the primary crustal elements,are essentially obtained from soil dust;Cu shows high crustal enrichment factors(EFc,>10),indicating that it is notably affected by anthropogenic activities.Moreover,the anthropogenic activities in the Southern Hemisphere have had an impact on lead deposition in Antarctica.This study not only enriches the trace metal historical record along the Zhongshan Station-Dome A but also provides a high-resolution ice core record,which is very crucial for the reconstruction of trace metal concentration changes in the last 100 years.

    Investigating the dynamics and interactions of surface features on Pine Island Glacier using remote sensing and deep learning

    Qi ZHUHua-Dong GUOLu ZHANGDong LIANG...
    609-622页
    查看更多>>摘要:Pine Island Glacier(PIG),the largest glacier in the Amundsen Sea Embayment of West Antarctica,has contributed to over a quarter of the observed sea level rise around Antarctica.In recent years,multiple observations have confirmed its continuous retreat,ice flow acceleration and profound surface melt.Understanding these changes is crucial for accurately monitoring ice mass discharge and future Antarctic contributions to sea level rise.Therefore,it is essential to investigate the complex interactions between these variables to comprehend how they collectively affect the overall stability of the intricate PIG system.In this study,we utilized high-resolution remote sensing data and deep learning method to detect and analyze the spatio-temporal variations of surface melt,ice shelf calving,and ice flow velocity of the PIG from 2015 to 2023.We explored the correlations among these factors to understand their long-term impacts on the glacier's stability.Our findings reveal a retreat of 26.3 km and a mass loss of 1001.6 km2 during 2015-2023.Notably,extensive surface melting was observed,particularly in the 2016/2017 and 2019/2020 melting seasons.Satellite data vividly illustrate prolonged and intense melting periods,correlating with a significant retreat in the glacier's terminus position in 2019/2020.Furthermore,the comprehensive analysis of surface melting and the cumulative retreat of the ice shelf from 2017 to 2020 on the PIG shows a temporal relationship with subsequent significant changes in ice flow velocity,ranging from 10.9 to 12.2 m d-1,with an average acceleration rate of 12%.These empirical findings elucidate the intricate relationship among surface melt,ice flow velocity,and consequential glacier dynamics.A profound understanding of these interrelationships holds paramount importance in glacier dynamic changes and modeling,providing invaluable insights into potential glacier responses to global climate change.

    Hourly land surface temperature retrieval over the Tibetan Plateau using Geo-LightGBM framework:Fusion of Himawari-8 satellite,ERA5 and site observations

    Zhao-Hua LIUShan-Shan WENGZhao-Liang ZENGMing-Hu DING...
    623-635页
    查看更多>>摘要:The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological consequences.Therefore,it is crucial to have high-temporal-resolution and seamless hourly estimating and monitoring of LST for a better understanding of climate change on the TP.Here,we employed Himawari-8 satellite,Digital Elevation Model(DEM),ERA5 reanalysis and meteorological station observations data to develop a new LightGBM framework(called Geo-LightGBM)for estimating LST on the TP,and then analyzed the spatiotemporal variations of those LST.Geo-LightGBM demonstrated excellent LST estimation accuracy,with an R2(coefficient of determination)of 0.971,RMSE(root-mean-square error)of 2.479 ℃,and MAE(mean absolute error)of 1.510 ℃.The estimated LST values for the year 2020 agreed well with observed values,with remarkable differences in hourly LST variations.Meanwhile,the estimated LST was more accurate than that from FY-4A.Spatially,there were two high LST centers,located in the Yarlung Zangbo River Basin and the Qaidam Basin,and a low LST center located in the central TP.The SHAP(SHapley Additive exPlanations)and correlation analyses revealed DSCS(the mean ground downward shortwave radiation under clear-sky conditions)to be the most importantly input variable for estimating LST.Spatiotemporal dummy variables(e.g.,longitude,latitude,DEM)were also found to be crucial for model accuracy improvement.Our findings indicate the potential for constructing a high-precision and seamless 24-h LST real-time retrieval and monitoring platform for the TP by combining satellite and China's independently developed CLDAS(China Land Data Assimilation System)data in future.

    Evaluation of the energy budget of thermokarst lake in permafrost regions of the Qinghai-Tibet Plateau

    Ze-Yong GAOFu-Jun NIUYi-Bo WANGJing LUO...
    636-646页
    查看更多>>摘要:Thermokarst lake formation accelerates permafrost degradation due to climate warming,thereby releasing significant amounts of carbon into the atmosphere,complicating hydrological cycles,and causing environmental damage.However,the energy transfer mechanism from the surface to the sediment of thermokarst lakes remains largely unexplored,thereby limiting our understanding of the magnitude and duration of biogeochemical processes and hydrological cycles.Therefore,herein,a typical thermokarst lake situated in the center of the Qinghai-Tibet Plateau(QTP)was selected for observation and energy budget modeling.Our results showed that the net radiation of the thermokarst lake surface was 95.1,156.9,and 32.3 W m-2 for the annual,ice-free,and ice-covered periods,respectively,and was approximately 76%of the net radiation consumed by latent heat flux.Alternations in heat storage in the thermokarst lake initially increased from January to April,then decreased from April to December,with a maximum change of 48.1 W m-2 in April.The annual average heat fluxes from lake water to sediments were 1.4 W m-2;higher heat fluxes occurred during the ice-free season at a range of 4.9-12.0 W m-2.The imbalance between heat absorption and release in the millennium scale caused the underlying permafrost of the thermokarst lake to completely thaw.At present,the ground temperature beneath the lake bottom at a depth of 15 m has reached 2.0 ℃.The temperatures and vapor-pressure conditions of air and lake surfaces control the energy budget of the thermokarst lake.Our findings indicate that changes in the hydrologic regime shifts and biogeochemical processes are more frequent under climate warming and permafrost degradation.

    Profound loss of microbial necromass carbon in permafrost thaw-subsidence in the central Tibetan Plateau

    Wen-Ting ZHOUQuan-Lian LIShi-Chang KANGXiao-Dong WU...
    647-657页
    查看更多>>摘要:Climate warming is causing rapid permafrost degradation,including thaw-induced subsidence,potentially resulting in heightened carbon release.Nevertheless,our understanding of the levels and variations of carbon components in permafrost,particularly during the degradation process,remains limited.The uncertainties arising from this process lead to inaccurate assessments of the climate effects during permafrost degradation.With vast expanses of permafrost in the Tibetan Plateau,there is limited research available on SOC components,particularly in the central Tibetan Plateau.Given remarkable variations in hydrothermal conditions across different areas of the Tibetan Plateau,the existing limited studies make it challenging to assess the overall SOC components in the permafrost across the Tibetan Plateau and simulate their future changes.In this study,we examined the properties of soil organic carbon(SOC)and microbial necromass carbon(MicrobialNC)in a representative permafrost thaw-subsidence area at the southern edge of continuous permafrost in the central Tibetan Plateau.The results indicate that prior to the thaw-subsidence,the permafrost had a SOC content of 72.68±18.53 mg g-1,with MicrobialNC accounting for 49.6%.The thaw-subsidence of permafrost led to a 56.4%reduction in SOC,with MicrobialNC accounting for 70.0%of the lost SOC.MicrobialNC constitutes the primary component of permafrost SOC,and it is the main component that is lost during thaw-subsidence formation.Changes in MicrobialNC are primarily correlated with factors pH,plant input,and microbial properties.The present study holds crucial implications for both the ecological and biogeochemical processes associated with carbon release from permafrost,and it furnishes essential data necessary for modeling the global response of permafrost to climate warming.Based on this study and previous research,permafrost thawing in the Tibetan Plateau causes substantial loss of SOC.However,there's remarkable heterogeneity in SOC component changes across different regions,warranting further in-depth investigation.

    Comparison of bulk snow density measurements using different methods

    Hang SUXin-Yue ZHONGBin CAOYuan-Tao HU...
    658-668页
    查看更多>>摘要:Snow density is one of the basic properties used to describe snow cover characteristics,and it is critical for remote sensing retrieval,water resources assessment and modeling inputs.There are many instruments available to measure snow density in situ.However,there are mea-surement errors of snow density for bulk and layers or gravimetric and electronic instruments,which may affect the accuracy of remote sensing retrieval and model simulation.Especially in China,due to the noticeable heterogeneity of snowpacks,it is necessary to evaluate in detail the performance and applicability of snow density instruments in different snowpack conditions.This study evaluated the performance of different snow density instruments:the Federal Sampler,the model VS-43 snow density cylinder(VS-43),the wedge snow density cutter(WC1000 and WC250),and the Snow Fork.The average bulk snow density of all instrument measurements was set as the reference value for evaluation.The results showed that as compared with the reference,the VS-43 cylinder presented the best performance for bulk snow density measurement in the measured range with the lowest RMSE(11 kg m-3),BIAS(3 kg m-3),and MRE(1.6%).For layer observation,bulk snow density was overestimated by 8.1%with WC1000 and underestimated by 11.4%with Snow Fork which was the worst performance compared with the reference value,and there were greater measurement errors of snow density in the depth hoar than other snow layers.Compared with grassland,the uncertainty of snow density measurements was slightly lower in forests.Overall,the Federal Sampler and VS-43 cylinder are more suitable for bulk snow density measurement in deep snowpack regions across China,and it is recommended to use WC1000,WC250 and Snow Fork to measure the snow density of snow layers in the snow stratigraphy.

    Projected near-surface wind speed and wind energy over Central Asia using dynamical downscaling with bias-corrected global climate models

    Jin-Lin ZHATing CHUANYuan QIUJian WU...
    669-679页
    查看更多>>摘要:Wind energy development in Central Asia can help alleviate drought and fragile ecosystems.Nevertheless,current studies mainly used the global climate models(GCMs)to project wind speed and energy.The simulated biases in GCMs remain prominent,which induce a large uncertainty in the projected results.To reduce the uncertainties of projected near-surface wind speed(NSW)and better serve the wind energy development in Central Asia,the Weather Research and Forecasting(WRF)model with bias-corrected GCMs was employed.Compared with the outputs of GCMs,dynamical downscaling acquired using the WRF model can better capture the high-and low-value centres of NSWS,especially those of Central Asia's mountains.Meanwhile,the simulated NSWS bias was also reduced.For future changes in wind speed and wind energy,under the Representative Concentration Pathway 4.5(RCP4.5)scenario,NSWS during 2031-2050 is projected to decrease compared with that in 1986-2005.The magnitude of NSWS reduction during 2031-2050 will reach 0.1 m s-1,and the maximum reduction is projected to occur over the central and western regions(>0.2 m s-1).Furthermore,future wind power density(WPD)can reveal nonstationarity and strong volatility,although a downward trend is expected during 2031-2050.In addition,the higher frequency of wind speeds at the turbine hub height exceeding 3.0 m s-1 can render the plain regions more suitable for wind energy development than the mountains from 2031 to 2050.This study can serve as a guide in gaining insights into future changes in wind energy across Central Asia and provide a scientific basis for decision makers in the formulation of policies for addressing climate change.

    Thermal and hydrological processes in permafrost slope wetlands affect thermosyphon embankment stability

    Bo-Wen TAIQing-Bai WUXiao-Ming XU
    680-694页
    查看更多>>摘要:To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-water changes of soil in slope wetlands environment under climate warming.More specifically,considering valuable field data from 2001 to 2019,the long-term heat and water changes in active layers of the slope wetland site along the Qinghai-Xizang Railway(QXR)are illustrated,the effect of thermosyphon measures in protecting the permafrost environment is evaluated,and the influences of climate warming and hydrological effects on the stability of slope wetland embankments are systematically discussed.The permafrost at the slope wetland site is rapidly degrading,demonstrating a reduction in active layer thickness of>3.7 cm per year and a permafrost temperature warming of>0.006 ℃ per year.The thermosiphon embankment developed by QXR has a specific cooling period;thus,to mitigate the long-term impacts of climate warming on the thermal stability of permafrost foundation,it is essential to implement strengthening measures for the thermosiphon embankment,such as adding a crushed-rock layer or sunshade board on the slope of thermosiphon embankment to creating a composite cooling embankment.Short-term seasonal groundwater seepage intensifies frost damage to the slope wetland embankment,while long-term seasonal supra-permafrost water and groundwater seepage exacerbates uneven transverse deformation of slope wetland embankment.Long-term climate warming and slope effects have altered the surface water and groundwater hydrological processes of slope wetlands,potentially leading to an increased occurrence of slope embankment instability.These results are crucial for improving our understanding of heat and water variation processes in the active layer of slope wetland sites located in permafrost regions and ensuring long-term service safety for the QXR.