查看更多>>摘要:如今越来越多的攻击者通过修改恶意软件源码的方式逃避恶意软件检测,恶意软件变种在代码重用、编码风格、攻击行为等多方面的复杂关系为恶意软件分析带来了挑战.近年来,图神经网络凭借其在建模图结构数据,学习实体间复杂关系等方面的强大能力,已被广泛应用于恶意软件分类与检测任务之中,以建模恶意软件及其变种间复杂的关系,摆脱孤立分析困境.然而,现有方法一方面缺少对恶意软件及其变种间多维度复杂关系的全面表征,导致复杂关联关系未被充分挖掘及利用.另一方面仅关注恶意软件间的拓扑结构,忽略了实体语义信息,这导致攻击者极易通过对抗手段伪造特征从而逃过检测.此外,与恶意软件相关的Windows API、通信IP等实体自身匮乏的语义信息进一步阻碍了语义信息的提取和表示.因此,实现恶意软件间全面的关联关系与特征语义信息的融合对提升恶意软件变种检测的鲁棒性和准确性具有重要意义.为此,本文提出了一种基于异质图属性增强的恶意软件变种检测方法.首先,构建了一个恶意软件异质信息网络,以建模恶意软件及特征间的复杂关系;然后,通过恶意软件异质信息网络,将恶意软件变种检测问题转化为异质图中的节点分类问题,为实体节点构建语义属性来增强节点信息的表示;接下来,对于其中语义信息匮乏的实体节点,从外部开源数据中学习实体的语义信息来弥补自身的语义缺失;最后,本文以拓扑关系为指导,基于注意力机制聚合有属性节点信息以补全无属性节点,实现节点属性补全.遵循一种迭代优化方式,以交替式地优化补全过程与异质图节点嵌入过程,实现统一的基于异质图属性补全的恶意软件变种检测方法.实验结果表明,本文提出的方法能够有效提升恶意软件变种检测的性能,在多个数据集下优于其他最先进的模型.