查看更多>>摘要:In this paper,we consider the fully parabolic chemotaxis system with the general logistic source{ut=Δ(γ(v)u)+λu-μukx ∈Ω,t>0,vt=Δv+wz,x ∈Ω,t>0,wt=-wz,x ∈ Ω,t>0,zt=Δz-z+u,x ∈ Ω,t>0,where Ω ⊂ Rn(n ≥ 1)is a smooth and bounded domain,λ ≥ 0,μ ≥ 0,κ>1,and the motility function satisfies that γ(v)∈ C3([0,oo)),γ(v)>0,γ'(v)<0 for all v ≥ 0.Considering the Neumann boundary condition,we obtain the global boundedness of solutions if one of the fol-lowing conditions holds:(ⅰ)λ=μ=0,1 ≤ n ≤ 3;(ⅱ)λ>0,μ>0,combined with κ>1,1 ≤n ≤ 3 or k>n+2/4,n>3.Moreover,we prove that the solution(u,v,w,z)exponentially converges to the constant steady state((λ/μ)1/k-1,∫Ωv0dx+∫Ωw0dx/|Ω|,0,(λ/μ)1/k-1).