首页期刊导航|无机材料学报
期刊信息/Journal information
无机材料学报
中国科学院上海硅酸盐研究所
无机材料学报

中国科学院上海硅酸盐研究所

郭景坤

月刊

1000-324X

wjclxb@mail.sic.ac.cn

021-52411301 52411302

200050

上海市定西路1295号

无机材料学报/Journal Journal of Inorganic MaterialsCSCD北大核心CSTPCDEISCI
查看更多>>本刊为专业技术性刊物。主要刊登人工晶体、特种玻璃、高温结构陶瓷、功能陶瓷、非晶半导体、无机涂层、特种无机复合材料等方面的科研成果。主要栏目有综合评述、研究论文、研究简报、动态进展等。主要读者对象为相关学科的科技工作者及大专院校师生。
正式出版
收录年代

    渐入佳境的MXene研究

    黄庆
    113-114页

    无机材料的"化学剪刀"结构编辑策略

    丁浩明陈科李勉李友兵...
    115-128页
    查看更多>>摘要:受到生物基因工程中"基因剪刀"的启发,"化学剪刀"作为一种重要的研究工具在材料结构编辑及应用研究中发挥着重要作用。本文对"化学剪刀"在材料结构编辑及应用方面的研究进展进行了评述。首先,介绍了"化学剪刀"的概念和基本原理,即指在保持初始材料主结构不变的条件下,通过化学反应敲除、置换、修复或重构目标原子或结构单元,从而定制化编辑材料晶格中的组成元素、晶体结构以及微观形貌,最终实现特定的材料结构与功能。随后,详细回顾了"化学剪刀"在材料结构编辑中的具体应用,即如何利用化学剪切、化学修饰、化学合成和化学刻蚀与化学插层等结构编辑方法对材料结构进行精确调控和功能设计。最后,对"化学剪刀"未来在材料结构编辑及应用的研究方向进行了展望。本评述详细介绍了"化学剪刀"在材料结构编辑及应用研究方面的研究进展和巨大潜力,为探索和开发"化学剪刀"在材料领域的应用提供了有力的理论和实验支撑,并有望推动相关材料领域的发展。

    化学剪刀无机材料结构编辑专题评述

    MXenes及其复合物的太赫兹电磁屏蔽与吸收

    万胡杰肖旭
    129-144页
    查看更多>>摘要:开发新型低维材料在太赫兹电磁屏蔽与吸收领域的应用是一个极为重要的研究方向,低维材料以其独特的电学、力学与电磁响应而有望创造出更加高效的电磁屏蔽与吸收方案。二维过渡金属碳化物、氮化物与碳氮化合物MXenes在低频波段已经展示出优异的电磁屏蔽与吸收性能,尤其是MXenes兼具高电导率、低密度、高柔性等特点,有利于未来太赫兹器件便携化与系统集成化。然而,将MXenes太赫兹电磁屏蔽与吸收材料推向实际应用过程中,面临着附着稳定性、环境稳定性、不耐高温等问题,无法满足航空航天和第六代通信场景需求。此外,目前缺乏更加全面的太赫兹散射与吸收验证手段。针对上述问题,研究人员开展了广泛且深入的工作。本文回顾了近年来主流电磁屏蔽与吸收材料的主体构型与基础理论原理,并重点介绍了多种 MXenes 及其复合物在薄膜与多孔结构下的太赫兹电磁屏蔽与吸收特性,包括Ti3C2Tx、Mo2Ti2C3Tx、Mo2TiC2Tx、Nb4C3Tx、Nb2CTx,并展望了MXenes作为太赫兹频段中电磁屏蔽与吸收材料所面临的挑战和机遇。

    二维材料MXenes太赫兹电磁屏蔽与吸收材料专题评述

    MAX相陶瓷增强金属基复合材料:制备、性能与仿生设计

    刘艳艳谢曦刘增乾张哲峰...
    145-152页
    查看更多>>摘要:由于原子间存在共价键、金属键与离子键的混合键合状态,MAX 相陶瓷兼具金属和陶瓷材料的性能特点,并且常与金属之间表现出良好的润湿性,有助于形成强界面结合,独特的层状原子结构使MAX相陶瓷表现出良好的断裂韧性、阻尼与自润滑性能。因此,作为金属基复合材料的增强相,MAX相陶瓷具有显著优势,本文着重介绍相关研究进展。目前,MAX 相陶瓷增强金属基复合材料主要通过搅拌铸造、粉末冶金和熔体浸渗等途径制备,得到的复合材料表现出优于金属基体的强度、硬度与模量,同时还具备良好的耐磨、导电、抗电弧侵蚀等性能。此外,借助真空抽滤、冰模板等工艺可实现超细片状MAX相陶瓷粉体的择优定向排列,然后利用金属熔体浸渗多孔陶瓷骨架,可获得具有类贝壳结构的 MAX 相陶瓷增强金属基仿生复合材料,进一步提升材料的强韧性能。MAX 相陶瓷增强金属基复合材料在承载、电接触等应用领域具有显著优势和广阔前景。

    MAX相陶瓷金属基复合材料仿生设计力学性能熔体浸渗专题评述

    高性能MXenes纳米复合材料研究进展

    李雷程群峰
    153-161页
    查看更多>>摘要:二维过渡金属碳/氮化物(MXenes)以其优异的力学和电学性能,在多个领域展示出巨大的应用前景。近年来,高性能MXenes纳米复合材料(包括一维纤维、二维薄膜和三维块体)的研究取得了显著进展,但其力学性能仍远低于MXenes纳米材料的本征力学性能,这主要归因于MXenes纳米复合材料中存在的孔隙缺陷、MXenes纳米片取向度低以及界面相互作用弱等关键科学问题。针对上述问题,本文首先讨论了 MXenes 纳米材料的本征力学性能,总结讨论了不同类型高性能MXenes纳米复合材料的发展历程,并介绍了高性能MXenes纳米复合材料的最新研究进展,包括如何消除孔隙缺陷、提高MXenes纳米片的取向度以及增强界面相互作用。同时,介绍了高性能MXenes纳米复合材料在电热、热伪装、电磁屏蔽、传感以及储能等领域的应用。最后,梳理了高性能MXenes纳米复合材料存在的挑战,并展望了未来的发展方向。

    MXenes纳米复合材料力学性能功能应用专题评述

    MXene的红外特性及其应用研究展望

    巴坤王建禄韩美康
    162-170页
    查看更多>>摘要:MXene是一大类二维过渡金属碳氮化合物,其丰富的组分、二维原子层结构、金属电导和活性表面等特性使其与不同波段的电磁波(可见光、红外、太赫兹、微波波段等)产生独特的相互作用,并衍生了多种电磁功能应用。在红外波段,MXene具有宽域的红外辐射特性,活性表面使其具备可调的红外吸收。近年来,MXene的上述性质引起了广泛研究兴趣。本文首先对不同MXene组分的本征红外辐射特性及调控策略进行了系统总结,并简要介绍其代表性红外应用,重点讨论MXene在这些应用中的贡献和作用机制,包括红外识别/伪装、表面等离激元、光热转换、红外光电探测等。最后,对MXene红外功能应用的未来发展方向进行了展望。

    MXene红外辐射光热转换热管理红外识别专题评述

    MXetronics—MXene电子学

    徐向明Husam N ALSHAREEF
    171-178页
    查看更多>>摘要:超薄的过渡金属碳氮化合物MXenes,作为一大类新兴二维(2D)材料,是当前材料研究热点方向之一。自 2D材料发现至今已有近 20 年,以石墨烯、过渡金属硫族化合物、黑磷等为代表的 2D材料在微纳电子领域经历了相对广泛且深入的研究,MXenes自 2011 年诞生以来在微纳电子领域的研究也方兴未艾。MXenes拥有丰富的元素结构组成和独特的物理化学特性(表面亲水性、功函可调、官能团可调、电和离子快速传输特性、表面离子激元、光热电、电磁吸收等),使其在微纳电子领域具有潜在的应用前景。Alshareef课题组近几年致力于将MXene引入到微纳电子领域,并在 2019 年用MXetronics来定义MXene电子学这一新兴的学术领域。本文简要总结和评价了该领域的代表性进展,梳理了包括微电子级的合成、加工、物性探索和器件应用等方面面临的挑战,最后指出一些关键的研究方向和尚未探索的细分领域。

    MXenes微纳电子薄膜微纳加工合成晶体管专题评述

    MXene在压力传感中的研究进展

    尹建宇刘逆霜高义华
    179-185页
    查看更多>>摘要:近年来,压力传感器在智能可穿戴纺织品、健康监测、电子皮肤等领域得到了广泛应用。二维纳米材料MXene的出现,为压力传感带来了全新的突破。Ti3C2Tx是压力传感领域研究最多的MXene,具有良好的机械性能、高导电性、优异的亲水性以及广泛的可修饰性,是理想的压力传感材料。因此,近些年研究者们对 MXene 在压力传感器中的设计和应用进行了大量探索和研究。本文总结了 MXene 的制备技术和抗氧化方法。同时介绍了基于MXene的微结构设计,包括气凝胶/多孔结构材料、水凝胶、柔性衬底和薄膜。该类设计有利于提高压力传感器的响应范围、灵敏度和柔韧性,促进了压力传感器的快速发展。此外,进一步探讨了MXene压力传感器的工作机制,包括压阻式、电容式、压电式、摩擦电式、电池式和纳米流体式等。MXene以其优异的特性而在各种机制的传感器中得到了广泛应用。最后,对MXene材料的合成、性质以及其在压力传感方面的机遇和挑战进行了展望。

    MXene压力传感器合成方法传感机制专题评述

    二维MXenes材料在柔性光电探测器中的应用展望

    李腊沈国震
    186-194页
    查看更多>>摘要:二维过渡金属碳/氮化物(MXenes)自 2011 年被首次报道以来,凭借其特殊的二维层状结构、优异的导电性和电化学性能在能源、催化、传感、电磁屏蔽和微波吸收等领域吸引了极大关注。近几年,随着对该材料认识的不断加深,其在光电领域的研究也不断深入。与其它领域不同,光电器件聚焦于延伸MXenes材料半导体性质,通过设计表面官能团、精准控制层数等来打开材料带隙,从而使其从金属性质转变为半导体性质。本文主要围绕MXenes材料的光电性质,介绍其在柔性光电子器件中的应用,系统阐述MXenes材料在透明电子器件、光电探测器、图像传感器、光电晶体管、人工神经视觉网络系统的应用前沿现状与趋势,并展望了MXenes基柔性光电器件面临的挑战以及未来发展前景。

    MXene柔性电子透明电子光电探测器带隙调控专题评述

    多功能MXene油墨:面向印刷能源及电子器件的新视角

    邓顺桂张传芳
    195-203页
    查看更多>>摘要:基于功能油墨的先进印刷技术(打印、涂布),能够突破传统制造手段的瓶颈,实现具有复杂结构和特定功能的个性化薄膜及电子器件的快速成型,在可穿戴智能识别、能源存储、电磁屏蔽及吸波、触摸显示等领域展现出巨大的应用前景。印刷先进能源及电子器件的关键在于,开发先进功能油墨材料和与之相匹配的先进印刷技术。2011年发现的 MXene 材料,是一类由过渡金属碳化物、氮化物或碳氮化物所组成的二维大家族的总称,因其卓越的物理和化学性质(如高电导率、出色的亲水性和丰富的表面化学)而受到广泛关注,特别适合作为印刷电子器件的油墨材料。探索 MXene 油墨的印刷行为特征并厘清 MXene 油墨在印刷关键环节中的机理,不仅有助于获得高精度的MXene 油墨印刷图案,而且可以为印刷多尺度、多材料的多功能薄膜和电子器件打下了坚实基础。本文首先介绍了MXene的制备及其片层胶体的化学稳定性,并对其流变学特性、可打印油墨的形成、油墨印刷行为以及与之适配的打印方法进行了讨论,着眼于 MXene 油墨在能源、健康监测和传感应用方面的最新进展,分析了该领域面临的挑战和未来的发展方向,为该领域的研究者提供新的视角和启示。

    印刷电子功能油墨MXene增材制造健康监测专题评述