首页期刊导航|计算机技术与发展
期刊信息/Journal information
计算机技术与发展
陕西省计算机学会
计算机技术与发展

陕西省计算机学会

王守智

月刊

1673-629X

ctad@vip.163.com

029-85522163

710054

西安市雁塔路南段99号

计算机技术与发展/Journal Computer Technology and DevelopmentCSTPCD
查看更多>>《计算机技术与发展》期刊,原名《微机发展》,中国计算机学会会刊,中国科技核心期刊、中国科技论文统计源期刊。中国学术期刊综合评价数据库统计源期刊,中国核心期刊数据库收录期刊,中国期刊全文数据库收录期刊,万方数据资源系统数字化期刊群上网期刊,中国学术期刊(光盘版)全文收录期刊。中国计算机学会和陕西省计算机学会共同主办。刊名为著名科学家胡启恒院士亲笔所提,中国计算机学会名誉理事长张效祥院士写了创刊词。1991年创刊,国内统一刊号CN61-1450/TP,国际刊号:ISSN 1673-629X。该刊为综合性学术技术刊物、月刊。该刊在国内外有广泛的覆盖面,国内读者分布在全国30个省市,国际读者分布在北美、西欧、韩国、日本以及我国港、澳、台等38个国家和地区。几年来高水平的论文刊登数量明显增加,各类自然科学基金论文刊登数量已超过80%,各项指标在我国自然科学自动化、计算机类(TP)多种期刊中排名前列,已成为全国最具影响力的自然科学杂志之一。 该刊在我国计算机界有广泛的作者群体,主要稿件来源单位有:北京大学、清华大学、南京大学、复旦大学、同济大学、浙江大学、中国科学技术大学、国防科技大学、上海交通大学、西安交通大学、北京航空航天大学、南京航空航天大学、华中科技大学、哈尔滨工业大学、西北工业大学、吉林大学、武汉大学、中山大学、四川大学、山东大学、厦门大学、天津大学、重庆大学、中南大学、东北大学、上海大学、福州大学、安徽大学、西北大学等全国数百所重点大学以及中国科学院、中国航空、航天、电子、中国水电、中国建筑、中国测绘科学研究院等重点研究院所等。 刊载内容涉及国内外计算机科学的发展方向、技术和创新的最新成就、软件工程的最新成果、应用开发的成功经验等,在学术界有较好的影响。为我国计算机的创新、设计、开发、应用创造了一个宽舒和谐的学术交流的氛围,提供了一个良好的学术、技术展示的平台,成为我国计算机和嵌入式系统领域最具有代表性的前沿性的刊物之一。该刊的编委是来自北京大学、清华大学、南京大学、复旦大学等九所知名大学和七所重要研究所,以及美国、加拿大的外籍专家共22位著名教授或研究员组成。以沈绪榜院士为首的编委会顾问组把握着期刊的大方向.
正式出版
收录年代

    一种基于双速度特征的轨迹划分方法

    祝贺于子兴
    61-66页
    查看更多>>摘要:轨迹数据挖掘对于基于位置的应用非常重要,而轨迹划分是轨迹数据挖掘的重要步骤.节点的运动轨迹数量很大,轨迹形状迥异千差万别,使得轨迹划分成为轨迹数据挖掘的关键和难点.轨迹划分的目的是去掉多余的轨迹点,留下重要的轨迹点数据,且要求处理后得到的轨迹留有原来轨迹的特征.该文从速度和加速度等方面分析了节点的运动行为,提出了一种基于双速度特征的轨迹划分方法(trajectory partition method based on double velocities,TPDV).在TPDV中,首先通过检测节点移动速度的变化来找出速度改变点,并且根据节点加速度变化也可提取出特征点,然后在检测节点的速度和加速度变化的前提下,根据节点活动的时间和范围来确定停留点,最后根据提取的特征点对子轨迹进行划分.基于Geolife轨迹数据集的仿真结果表明,基于双速度特征的轨迹划分方法在运行时间、简化率和划分误差方面都表现较好.

    数据挖掘轨迹划分移动特征双速度特征停留点提取

    基于多层注意力机制的服装电商评论情感分析

    胡新荣王哲刘军平彭涛...
    67-72页
    查看更多>>摘要:互联网购物逐渐走进人们生活,人们在购物的同时也会留下海量评论文本,这些文本蕴含着巨大的价值和情感倾向,通过分析这些服装电商评论文本情感倾向,为推荐系统提供了参考.传统的算法难以提取到文本更深层次的情感特征,难以达到很好的效果.因此,该文提出了一种基于多层注意力机制BiGRU-SD-Attention的算法模型.首先,通过分布式爬虫采集服装电商评论文本,将文本数据进行清洗,划分为词语级别和句子级别数据集;利用BiGRU网络提取文本的正、负情感特征,然后对词语和句子分别运用注意力机制进行情感特征的重新加权计算;通过多层递进的权重计算,最后分类输出服装电商文本的情感特征倾向.实验结果表明,该算法的准确率达到了94.23%,对比传统的SVM算法(81.67%)以及单一注意力机制的BiLSM-Attention算法(93.50%),在各方面都有了显著的提升.

    分布式爬虫服装电商评论双向门控循环记忆网络注意力机制情感分析

    基于共享最近邻的客户交易数据聚类算法

    李遥荀亚玲
    73-78页
    查看更多>>摘要:利用客户交易数据聚类分析,可得到更优异的客户细分效果,有助于企业更详实地了解消费者,制定精准的营销策略.PurTreeClust是一种新型的客户交易数据聚类算法,定义了一种新型的度量方式PurTree距离,可以很好地分析处理具有层次树结构的交易数据,但未考虑近邻点的影响,仅将交易树分配到距离最近的聚类中心所属类簇,容易出现错误的交易树分配.该文利用交易树之间的共享最近邻信息,提出一种客户交易数据聚类算法.该算法在聚类分配时,充分利用共享最近邻,首先分配类簇的从属交易树,然后分配类簇的可能从属交易树,实现聚类分配,可发现更加紧凑清晰的类簇,并避免了交易树错误分配,改善了客户细分效果.最后采用6个真实客户交易数据集进行实验,验证了该算法的有效性.

    聚类交易数据客户细分交易树共享最近邻

    基于K近邻的运动想象分类中的噪声效益

    陈佳卉王友国翟其清
    79-84页
    查看更多>>摘要:关于脑电信号中的噪声处理问题一直是脑-机接口(BCI)领域的重点研究方向,通常认为噪声是有害的,所以针对脑电信号中的噪声处理往往以降噪或消噪为主.但是根据随机共振(SR)的思想,在非线性系统中噪声往往能增强信号处理,而脑电信号恰好具有非线性的特征,因此提出运用高斯噪声提高运动想象脑电信号的识别率.通过在脑电信号中加入独立的高斯噪声,将原始训练集与添加噪声的训练集串联起来增加训练样本量,考虑训练样本量增加与否和噪声加入的阶段(训练或/和测试);通过共空间模式(CSP)和小波包变换(WPT)提取分类特征,并用K近邻(KNN)算法进行分类.实验结果表明,只要加入适当强度的噪声,均可提高系统的分类准确率,出现随机共振现象;增加训练样本量的同时在训练集和测试集中加入适当强度相同的噪声,系统最大平均分类准确率相比不加噪声时增加9.28个百分点;K近邻算法的最大平均分类准确率相比决策树(DT)和支持向量机(SVM)而言整体更高,体现出K近邻算法的优越性和可靠性.

    随机共振高斯噪声K近邻运动想象脑电信号

    流形学习降维算法中一种新动态邻域选择方法

    徐胜超
    85-90页
    查看更多>>摘要:近年来,高维数据算法在诸如机器学习领域以及模式识别当中有着十分广泛的应用.降维算法的目的是为了揭示出在高维数据空间中样本数据的固有的组成特性,关注于寻找原始数据集特征表示中有价值的信息.相邻区域选择问题对流形学习降维算法的性能改进至关重要.因此,该文提出一种流形学习降维算法中的新动态邻域选择方法Mod-HLLE(modified Hessian locally linear embedding).该方法针对Hessian布局线嵌入方法HLLE进行了考察,Mod-HLLE算法是针对高维数据的局部线性嵌入降维算法的改进.Mod-HLLE主要通过计算每个数据点的局部相邻区域参数的方式来完成测量距离和欧几里德距离的评测,再通过动态的相邻区域的尺寸大小来选择新的局部相邻区域.Mod-HLLE在非噪声干扰和噪声干扰情况下,对两类典型3D高维数据集进行降维测试.实验结果表明,Mod-HLLE可以获得很好的几何直观效果,在性能和稳定性方面都优于常见的降维算法,对其他高维数据降维算法的改进也具有很好的参考价值.

    流形学习黑塞局部线性嵌入数据挖掘降维算法相邻区域

    面向行人重识别的多域批归一化问题研究

    张誉馨张索非王文龙吴晓富...
    91-97页
    查看更多>>摘要:近年来基于深度神经网络的行人重识别算法取得了长足的进步,被广泛应用于网络中的批归一化(batch normalization)模块发挥着重要作用.批归一化模块在多数情况下可有效提高网络收敛速度和训练稳定性,然而当多个独立标注的数据库混合在一块进行跨域或者多域训练时,数据之间的分布差异使得目前的批归一化算法工作逻辑存疑.由于不同批次下训练数据的分布差异较大,归一化过程中的统计参数不稳定导致批归一化效果恶化.该文聚焦于多数据集合并下的行人重识别模型训练问题,通过对多数据集分布差异导致的多域模型批归一化存在的问题进行分析.然后针对模型批量归一化算法面对的多域差异,提出了一种解决策略,在多个数据集并行训练下提高了模型的泛化能力.实验结果表明:所提出的多域归一化方法在多域训练下能有效提高模型最终的泛化能力,获得更高的识别准确度,并且可应用于其他行人重识别网络以进一步提升模型性能.

    计算机视觉深度学习行人重识别多域训练批归一化

    融合深度学习和聚类分析的自适应图像聚类

    侯青杨荣新张英杰李伟...
    98-103页
    查看更多>>摘要:针对卷积神经网络应用于图像分类任务时需要大量有标签数据的问题,提出一种融合卷积神经网络和聚类分析的无监督分类模型,将无监督算法引入深度学习,并将该模型应用到图像分类领域,来弥补现有分类方式的不足.首先对经典卷积神经网络AlexNet从网络结构和模型训练两个方面进行优化;然后利用改进后的自适应快速峰值聚类算法指导聚类过程,该模型在学习整个网络参数的同时对卷积输出的特征进行聚类,这两个过程迭代进行,以达到对图像进行无监督分类的目的;为了验证所提出的无监督图像分类模型的可行性和有效性,选用了四个常用于图像分类领域的数据集分别进行了分类实验,并将结果与近年来在图像无监督分类任务上表现相对优越的几种算法进行了横向对比.结果表明提出的无监督分类模型在不同数据集上均较现有的几种无监督方法有着更出色的表现.

    图像分类无监督融合自适应AlexNet网络快速峰值聚类

    基于核扩展混合块字典的单样本人脸识别研究

    马杲东吕非童莹曹雪虹...
    104-110,116页
    查看更多>>摘要:稀疏表示分类(sparse representation-based classification,SRC)在样本数量充足下的人脸识别中具有较好的识别效果.然而由于基本字典缺乏判别性同时过度依赖于字典中每类样本的原子数目,稀疏表示分类在真实情况下的单样本(每类样本只有一张训练样本)人脸识别任务中缺乏鲁棒性.针对以上问题,该文提出了基于核扩展混合块字典的单样本人脸识别方法.首先,对样本进行分块处理,分别对分块图像进行核判别分析(kernel discriminant analysis,KDA)投影降维,提取图像的局部特征信息构成更具判别性的基本块字典;然后,为经过KDA投影之后的分块样本分别构建遮挡字典和类内差异字典来描述样本中的大面积连续遮挡以及光照、表情等类内差异信息,将遮挡字典和类内差异字典共同组合成混合块字典,使混合块字典能够更好地描述测试样本中不同类型的差异信息;最后,将测试样本表示为基本块字典和混合块字典的稀疏线性组合,根据重构残差进行分类识别,从而实现真实情况下的单样本人脸识别.在标准人脸库CAS-PEAL,AR以及真实人脸库LFW和PubFig上的实验结果表明,该方法与其他方法相比有较好的结果.

    稀疏表示分类核判别分析人脸识别混合块字典单样本

    基于神经网络的图像来源识别方法比较研究

    孟旭孟坤
    111-116页
    查看更多>>摘要:随着手机等便携式智能电子设备的普及,图像已成为最重要的信息载体之一,在新闻、社交及司法等领域发挥着重要作用.在享用电子图像带来便捷性的同时,图像处理工具给不法分子通过篡改电子图像实施诈骗等犯罪活动提供了可能,识别图像来源、辨别图像真伪已成为遏制和惩罚此类犯罪活动的重要技术手段.该文讨论了神经网络在图像源识别中的应用方法,分别将原始图像和图像噪声作为模型输入数据,比较分析了神经网络的分类效果.从依赖数据属性、数据预处理方法以及应用模式等方面进行了实验.通过对实验结果进行分析,发现提取有代表性的图像块以及使用平滑的图像进行实验更有利于图像来源的识别.分别采用笔者建立的数据集(10个相机)和vision数据集(35个相机)作为分析数据集,图像来源分类的实验结果表明相对于简单估计相机传感器模式噪声的方法准确率提升了35%,图像来源判断的实验结果准确率达到了95%.

    图像来源识别噪声提取神经网络特征提取传感器模式噪声

    国产FPGA在存储刀片中的应用验证与设计实现

    马小鹏聂本明杭平平
    117-122页
    查看更多>>摘要:FPGA作为信号处理器件,在通信、航天、军工等领域中起到了关键作用,长期以来,高端FPGA器件被国外厂商垄断;伴随国家对半导体产业的扶持,国产信号处理器件在近些年取得了重大进展,尤其是大规模可编程逻辑器件FPGA,在规模、集成度、功能及性能等方面取得了长足进步,并在存储刀片中得到了广泛应用.然而在国产FPGA器件的推广应用过程中,也暴露出了一些设计与性能上的差异.为评估国产化FPGA器件是否能够满足存储刀片的应用需求,设计了国产FPGA器件的电路验证平台.平台采用国产飞腾4核CPU加国产高端FPGA及NVMe大容量电子盘实现,其中FPGA负责采集Rapid IO接口数据,同时在软件的协同控制下实现数据的缓存、DMA数据传输以及数据存储功能;通过该平台初步验证了国产FPGA器件的功能、性能、功耗以及环境适应性等情况,验证结果表明,国产FPGA器件在各方面基本满足了存储刀片的应用需求.

    FPGA国产存储设计应用验证