首页期刊导航|遥感学报
期刊信息/Journal information
遥感学报
遥感学报

顾行发

双月刊

1007-4619

jrs@irsa.ac.cn

010-64806643

100101

北京市安外大屯路中国科学院遥感应用研究所

遥感学报/Journal Journal of Remote SensingCSCD北大核心CSTPCDEI
查看更多>>本刊为专业性学术刊物。反映遥感领域的科研与技术应用成果。包括航天航空、农业、林业、资源开发、环境监测和保护、区域和工程地质勘探和评价、找矿、灾害监测和评估等领域的应用,以及地理信息系统、遥感、GIS及空间定位系统的综合应用等方面。读者对象为遥感及相关学科的科研人员及高等院校师生。
正式出版
收录年代

    遥感图像小样本舰船识别跨域迁移学习算法

    陈华杰吕丹妮周枭刘俊...
    793-804页
    查看更多>>摘要:跨域迁移学习旨在利用现有公开数据集,突破源域和目标域样本类别空间须一致的约束,提升目标域样本的识别精度.针对现有跨域迁移学习算法应用于遥感图像小样本舰船目标识别时存在的迁移类别受限和负迁移问题,本文提出一种基于源域样本相关性排序的跨域迁移学习算法:首先将目标域样本逆向加入源域分类任务中,根据加入前后各类别源域样本的识别精度变化情况,对源域样本进行相关性排序,将其划分为强/弱/负相关样本;然后采取自监督联合学习策略,在目标域分类网络中引入自监督角度预测辅助分支,筛选出的强相关源域样本仅参与该辅助分支的训练,不改变目标域主分类网络的结构.算法通过相关性排序去除了弱/负相关源域样本,有效避免了负迁移;引入自监督角度预测辅助分支,在保持主分类网络结构完整性的同时,充分利用了强相关源域样本的有效信息,学习到更具泛化能力的目标特征.实验结果显示:在遥感舰船小样本目标数据集上,提出的算法优于跨域迁移学习中广泛使用的Fine-tune(微调)算法;与仅使用主分类网络的目标域识别算法相比,遥感舰船目标识别精度提升了 17.59%.

    遥感舰船识别小样本学习跨域迁移学习相关性排序自监督学习

    信息动态

    封2,前插1页