首页期刊导航|岩石力学与岩土工程学报(英文版)
期刊信息/Journal information
岩石力学与岩土工程学报(英文版)
岩石力学与岩土工程学报(英文版)

钱七虎

季刊

1674-7755

rockgeotech@whrsm.ac.cn

027-87198182

430071

湖北省武汉市武昌区水果湖街小洪山2号

岩石力学与岩土工程学报(英文版)/Journal Journal of Rock Mechanics and Geotechnical EngineeringCSCDCSTPCD北大核心SCI
查看更多>>反映世界范围内,特别是中国岩石力学与工程的新成就、新理论、新方法、新经验、新动向,促进国内外学术交流,特别欢迎国家重大项目、国家自然科学基金项目及其他重要项目的研究成果,倡导和鼓励有实践经验的作者撰稿,并优先刊用这些稿件,本刊也发表少数侧重于工程应用的土力学方面的文章。为尽快交流最新的学术信息,本刊还发表短文和讨论文章、近期博士学位论文摘要、会议简讯、新书简介与相关的学术动态等;提倡撰写简短的讨论文章,活跃期刊学术氛围。
正式出版
收录年代

    Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand

    Ming HuangKai XuZijian LiuChaoshui Xu...
    291-302页
    查看更多>>摘要:Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7%after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 μm under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions.

    Modelling the viscoplastic behaviour of Callovo-Oxfordian claystone with consideration of damage effect

    Hao WangYu-Jun CuiMinh Ngoc VuJean Talandier...
    303-316页
    查看更多>>摘要:In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.

    Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method

    Qi ZhangQian SuZongyu ZhangZhixing Deng...
    317-332页
    查看更多>>摘要:Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-v-support vector regression(v-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-v-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the v-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-v-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-v-SVR are 7:3 and radial basis function,respectively.

    Fiber optic monitoring of an anti-slide pile in a retrogressive landslide

    Lei ZhangHonghu ZhuHeming HanBin Shi...
    333-343页
    查看更多>>摘要:Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.