首页期刊导航|岩石力学与岩土工程学报(英文版)
期刊信息/Journal information
岩石力学与岩土工程学报(英文版)
岩石力学与岩土工程学报(英文版)

钱七虎

季刊

1674-7755

rockgeotech@whrsm.ac.cn

027-87198182

430071

湖北省武汉市武昌区水果湖街小洪山2号

岩石力学与岩土工程学报(英文版)/Journal Journal of Rock Mechanics and Geotechnical EngineeringCSCDCSTPCD北大核心SCI
查看更多>>反映世界范围内,特别是中国岩石力学与工程的新成就、新理论、新方法、新经验、新动向,促进国内外学术交流,特别欢迎国家重大项目、国家自然科学基金项目及其他重要项目的研究成果,倡导和鼓励有实践经验的作者撰稿,并优先刊用这些稿件,本刊也发表少数侧重于工程应用的土力学方面的文章。为尽快交流最新的学术信息,本刊还发表短文和讨论文章、近期博士学位论文摘要、会议简讯、新书简介与相关的学术动态等;提倡撰写简短的讨论文章,活跃期刊学术氛围。
正式出版
收录年代

    Large-scale toppling slope under water level fluctuation of reservoir:A case of Yunnan Province,China

    Leilei JinYufeng WeiFei YeWenxi Fu...
    3034-3046页
    查看更多>>摘要:Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.The Wunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accordingly causing the water level at the Lajinshengu slope to increase by 30 m.A tension crack with a visible depth of 8 m was observed in the upper sector of the Lajinshengu slope after reservoir impoundment for 170 d.In the following days,numerous cracks appeared on the surface of the slope,and the maximum displacement of the slope reached 3.22 m.Then,a large-scale active defor-mation body within the Lajinshengu slope formed with an area of 2.62 × 105 m2 and a volume of 1.65 × 107 m3.Detailed field investigations,on-site monitoring,and centrifugal model tests were carried out to analyze the surface features,deformation characteristics,and failure mechanism of the Lajin-shengu slope.The results show that the slope is an ancient landslide,divided into two parts(i.e.zone A and zone B)by the gully.Zone B is a traction landslide caused by the displacement of zone A.The long-term inundation weakens the soft rock at the slope foot,intensifying the toppling of bedrock and consequently triggering the sliding of the overburden in zone A.The failure mode of the Lajinshengu slope is a typical case of toppling-sliding failure,and the underlying rock toppling drives the overlying sliding.In addition,early identification methods for toppling deformation covered by overburdened soil were proposed based on monitoring data and deformation signs.

    Development of a DFN-based probabilistic block theory approach for bench face angle design in open pit mining

    Jianhua YanXiansen XingZhihai LiWeida Ni...
    3047-3062页
    查看更多>>摘要:In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory con-sequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.

    Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading

    Qiong WuZhiqi LiuHuiming TangLiangqing Wang...
    3063-3079页
    查看更多>>摘要:The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by per-forming three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement ampli-tude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.

    A macro-mesoscopic constitutive model for porous and cracked rock under true triaxial conditions

    Li QianZuguo MoJianhai ZhangXianglin Xing...
    3080-3098页
    查看更多>>摘要:The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interplay between the closure of porous defects and the propagation of induced cracks,pre-senting challenges in accurately representing their mechanical properties,especially under true triaxial stress conditions.This paper proposes a conceptualization of rock at the mesoscopic level as a two-phase composite,consisting of a bonded medium matrix and frictional medium inclusions.The bonded me-dium is characterized as a mesoscopic elastic material,encompassing various minerals surrounding porous defects.Its mechanical properties are determined using the mixed multi-inclusion method.Transformation of the bonded medium into the frictional medium occurs through crack extension,with its elastoplastic properties defined by the Drucker-Prager yield criterion,accounting for hardening,softening,and extension.Mori-Tanaka and Eshelby's equivalent inclusion methods are applied to the bonded and frictional media,respectively.The macroscopic mechanical properties of the rock are derived from these mesoscopic media.Consequently,a True Triaxial Macro-Mesoscopic(TTMM)constitutive model is developed.This model effectively captures the competitive effect and accurately describes the stress-deformation characteristics of granite.Utilizing the TTMM model,the strains resulting from porous defect closure and induced crack extension are differentiated,enabling quantitative determina-tion of the associated damage evolution.

    Analysis of impact pressure,rock-breaking effect,and ground vibration induced by the disposable CO2 fracturing tube

    Chong YuYongan MaHaibo LiShouchun Deng...
    3099-3121页
    查看更多>>摘要:The technology of expansion fracturing with liquid CO2(EFLCO2)has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO2 design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak dis-tribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO2 weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO2(PPVco2)is significantly smaller than that caused by blasting(PPVexpiosive)The ratio of PPVexplosive to PPVCO2 is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO2 is relatively simple with a narrow fre-quency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.

    Ground settlement and tunnel response due to twin-curved shield tunnelling in soft ground with small clear distance

    Yao HuHaoran TangYinggang XuHuayang Lei...
    3122-3135页
    查看更多>>摘要:Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-curved shield tunnelling in soft ground were investigated using numerical simulation and field monitoring.Different curvature radii of twin curved tunnels and subsequent effects of tunnel construction were considered to reveal the tunnelling effect on ground surface settlement and tunnel deformation.The results show that the settlement trough yields one offset towards inside of curved shield tunnelling.The location of settlement trough and maximum settlement were affected by curvature radius but except for the shape and width of settlement trough.Adjacent parallel twin-curved shield tunnelling could increase the offset of existing settlement trough and maximum settlement.Then,an empirical prediction of surface settlement trough due to twin-curved shield tunnelling with same tunnel diameters in soft clay was proposed,which was applicable to curvature radius less than 800 m.Finally,a minimum radius of 600 m of curvature tunnel was proposed in terms of allowable convergence deformation of tunnel.The result could provide guidance on safety evaluation for twin curved shield tunnelling construction.

    Integrated wellbore-reservoir-geomechanics modeling for enhanced interpretation of distributed fiber-optic strain sensing data in hydraulic-fracture analysis

    Lijun LiuXinglin GuoXiaoguang Wang
    3136-3148页
    查看更多>>摘要:Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the impor-tance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.

    A generalized nonlinear three-dimensional Hoek-Brown failure criterion

    Jiaxin WangShunchuan WuHaiyong ChengJunlong Sun...
    3149-3164页
    查看更多>>摘要:To understand the strengths of rocks under complex stress states,a generalized nonlinear three-dimensional(3D)Hoek-Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter ad-vantages of GHB.Two new parameters,β,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This cri-terion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed crite-rion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.

    Combined blasting for protection of gob-side roadway with thick and hard roof

    Qiang FuJun YangYubing GaoChangjiang Li...
    3165-3180页
    查看更多>>摘要:The deformation control of surrounding rock in gob-side roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was pro-posed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study in-volves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engi-neering experiments were performed,affirming the efficacy of the combined blasting method in miti-gating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.

    Centrifuge modeling of a large-scale surcharge on adjacent foundation

    Jinzhang ZhangZhenwei YeDongming ZhangHongwei Huang...
    3181-3191页
    查看更多>>摘要:This study investigates the ground and structural response of adjacent raft foundations induced by large-scale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm × 700 mm × 300 mm(length × width × depth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the un-reinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure.