查看更多>>摘要:为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semant-ic enhancement for multimodal named entity recognition method,MSVSE)。该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语义特征解码,实现视觉特征的语义一致性约束;调用多任务标签解码器挖掘多模态文本表示和文本特征的细粒度语义,通过联合解码解决语义偏差问题,从而进一步提高命名实体识别准确度。为验证该方法的有效性,在Twitter-2015和Twitter-2017数据集上进行实验,并与其他10种方法进行对比,该方法的平均F1值得到提升。
查看更多>>摘要:现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因,而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别。此外,这些方法仅访问单个基因网络或各种基因数据的聚合网络,导致偏差和不完整性。因此,设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题。为此,首先构建多层网络和多层异构基因网络。然后,提出一种游走于多层网络和多层异构网络的拓扑偏置重启随机游走(Biased random walk with restart,BRWR)算法来识别疾病基因。实验结果表明,游走于不同类型网络上的识别候选疾病基因的BRWR算法优于现有的算法。最后,应用于多层异构网络上的BRWR算法能预测未诊断的新生儿类早衰综合征中涉及的疾病基因。