首页期刊导航|中国海洋工程(英文版)
期刊信息/Journal information
中国海洋工程(英文版)
中国海洋工程(英文版)

左其华

季刊

0890-5487

coes@nhri.cn

025-83734321

210024

南京市虎踞关34号

中国海洋工程(英文版)/Journal China Ocean EngineeringCSCDCSTPCD北大核心EISCI
查看更多>> China Ocean Engineering(简称COE)是中国科学技术协会主管、中国海洋学会主办、南京水利科学研究院编辑的英文版综合性、高科技学术季刊(刊号ISSN 0890 - 5487, CN32 – 1441 / P),于1987年创刊,每期180 ± 6页。国际订价:360美元 / 卷,国内订价:800元 / 卷。 COE办刊宗旨:向国外介绍我国与海洋工程有关的研究、设计、试验、生产、使用、管理等方面的成果以及学术动态,扩大对外宣传和交流,展示我国的研究水平。主要刊载:离岸工程、海洋工程、海洋能源利用工程、海洋环境保护工程、水下工程、潜水技术、救捞技术等方面的稿件。稿件形式:学术论文、研究简报、综合评论、调查报告、成果介绍等。COE编委会成员26人,编委会名誉主任严 恺教授 (两院院士),编委会主任邱大洪教授 (中科院院士),还有11位两院院士、6位海外学者和7位国内海洋工程界著名教授专家担任编委,本刊所刊载的论文均是在国内外首次发表的科技学术论文,不是《海洋工程》(中文版)的翻译版。 20年来,COE登载有国内大专院校、科研机构以及工程单位的两院院士和专家教授的论文;还登载一些欧美、澳洲、日本、韩国、印度、土耳其等国家及我国香港、台湾著名学者的论文;有些是中国学者与欧美、澳洲、日本、韩国、新加坡等国学者合作完成研究成果。近五年来,COE刊登论文中有近80%得到各类基金资助、有近20%是国际或国际合作完成,COE的基金论文比和国际论文比,都位居国内5300余种学术期刊的前列。 COE获中国科协、国家基金委1999年度国家自然科学基础性、高科技学术期刊专项基金资助;获中国科协2002、2003、2004和2005年度高科技学术期刊专项基金资助;获得中国科协2002年度重点期刊编辑部专项设备基金资助;获2007~2008年度国家自然科学基金重点学术期刊专项基金资助。COE目前已列入国家科技部中国科技论文统计核心源期刊,并被美国《科学引文索引》( SCI-E );美国《工程索引》( EI Compendex);俄罗斯《文摘杂志》(PЖ,AJ);日本《科学技术文献速报》(CBST);美国《剑桥科学文摘》(CSA);美国《应用力学评论》(AMR); 美国《石油文摘》(PA);等国内外18家权威检索数据库收录,在SCI-JCR公布的2001~ 2006年度国际海洋工程主题学科期刊影响因子指标中,COE均排名国际同类刊物的前十位(其中2003年度排名第七位,2005、2006年度排名第八位)。COE目前在国际海洋工程界已具有一定的知名度,并为我国海洋工程界专家、学者提供了一个在国际同行中展示自己的研究实力和水平,提高和扩大他们在国际学术领域的声望和影响的平台。COE也是我国、中国科协及江苏省的科技学术期刊中,在国际期刊界中为数不多具有影响力的专业学术期刊。COE作为国内外本行业学术界十分重要的传播和交流平台,为国家发掘培养出一大批海洋科学领域的杰出科技人才,如:两院院士;国务院学科评议组成员;长江学者;国家及省部级重点实验室主任;首席科学家;国家攻关项目负责人;上百位教授、博导和一大批博士、博士后;还有些专家学者是光华工程科技奖、国家和省部级科技进步奖、国家重大基金、国家杰出青年基金和国家基金获得者。近几年来,编辑部集体和个人取得的业绩得到上级部门的肯定和表彰,具体表现为:参评的两篇论文分别荣获“第二届(2004年)、第四届(2006年)中国科协期刊优秀学术论文奖”;COE进入首届和第二届“江苏期刊方阵”;副主编唐仁楠和编辑部主任吴永宁先后获“中国科技期刊优秀编辑奖—金牛奖”;吴永宁获“中国科技期刊青年编辑奖—骏马奖”和“江苏省科技期刊编辑学会—金马奖”;编辑部编辑杨 红获江苏省科学技术期刊编辑学会“优秀编辑”荣誉称号;吴永宁获“中国海洋学会优秀会员”荣誉称号,吴永宁被中国海洋学会期刊工作委员会和中国科学技术期刊编辑学会学术委员会聘任为委员,当选为江苏省期刊协会理事、江苏省科学技术期刊编辑学会常务理事。欢迎海内外海洋工程界的朋友们踊跃向本刊投稿。我们对高水平,特别是具有原创性的科学研究论文;对解决国际同行关注的难点与热点问题的论文;对国际合作项目、受国内外各类基金资助项目及重大科研经费资助项目完成的论文非常感兴趣,这类论文我们会安排优先发表。
正式出版
收录年代

    Mechanical Performance of Bio-inspired Bidirectional Corrugated Sand-wich Pressure Shell Under External Hydrostatic Pressure

    ZHANG YiCHEN YueYUN LaiLIANG Xu...
    297-312页
    查看更多>>摘要:This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional cor-rugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between cir-cumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.

    Two-Staged Method for Ice Channel Identification Based on Image Seg-mentation and Corner Point Regression

    DONG Wen-boZHOU LiDING Shi-fengWANG Ai-ming...
    313-325页
    查看更多>>摘要:Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58 frames per second.

    Three-Dimensional Sound Source Location Algorithm for Subsea Leakage Using Hydrophone

    LI Hao-jieCAI Bao-pingYUAN Xiao-bingKONG Xiang-di...
    326-337页
    查看更多>>摘要:Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environ-ment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K and α.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.

    Mechanical Modeling and Analysis of Stability Deterioration of Production Well During Marine Hydrate Depressurization Production

    SUN Huan-zhaoCHANG Yuan-jiangSUN Bao-jiangWANG Kang...
    338-351页
    查看更多>>摘要:Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depres-surization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well con-sidering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.

    Application of GNSS-PPP on Dynamic Deformation Monitoring of Offshore Platforms

    YU Li-naXIONG KuanGAO Xi-fengLI Zhi...
    352-361页
    查看更多>>摘要:The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Fur-thermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.

    Information for Contributors

    封3页