查看更多>>摘要:新冠肺炎的计算机辅助诊断是一种实现智能化影像诊断、临床诊断及临床分型的方法,在新冠肺炎的辅助诊断过程中,图像的病灶区域与组织边界对比不明显,导致模型不能较好地关注病灶区域,对有效特征的提取不够充分.针对上述问题,提出一个新冠肺炎辅助诊断模型seqAFF-ResNet(sequential attentional feature fusion-residual neural network).设计串行注意力特征融合(sequential attentional feature fusion,seqAFF)模块,该模块串联条带注意力特征融合(strip attentional feature fusion,SAFF)模块和全局局部注意力特征融合(global local attentional feature fusion,GLAFF)模块,获取图像的纹理信息以及全局和局部信息,弥补卷积神经网络对于细节特征提取能力的不足,使得模型可以更好地关注于病灶区域;构造深浅层特征融合(deep and shallow feature fusion,DSFF)模块,使用深层特征的语义信息来影响浅层信息,同时将浅层的空间信息传入深层特征中,使深浅层特征进行有效融合,捕获丰富的上下文信息,实现跨层注意力特征增强,使网络能够更好地定位病变区域.与残差神经网络(residual neural network,ResNet)相比,seqAFF-ResNet准确率提升了 3.42%,精确率提升了 3.53%,F1 分数提升了2.77%,AUC值提升了0.9%,实验结果表明,所提模型可以提高新冠肺炎的识别准确率,且与同类模型相比具有更好的性能.所提方法为新冠肺炎的辅助诊断提供了有效的识别方法,对新冠肺炎的计算机辅助诊断具有重要意义.