首页期刊导航|颗粒学报(英文版)
期刊信息/Journal information
颗粒学报(英文版)
颗粒学报(英文版)

郭慕孙

双月刊

1674-2001

jcsp@home.ipe.ac.cn

010-82629146

100080

北京中关村北二条1号中科院过程所内

颗粒学报(英文版)/Journal China ParticuologyCSCDCSTPCD北大核心EISCI
查看更多>>本刊以创精品与国际化为办刊方针,旨在反映中国颗粒学研究的最新成果、及时追踪国际颗粒学领域的最新动态。学报主要刊登国内外颗粒学领域中的研究、工程和应用方面的优秀原始论文,包括颗粒测试与表征、颗粒制备与处理、流态化、气溶胶和超微颗粒等。本刊不仅设有论坛、研究论文、研究简报等内容,还有书评、会议信息与报道、测试仪器进展等栏目,便于相关人士进行学术交流,并为科技成果的展示提供平台,信息十分丰富。本刊已陆续被美国化学文摘(CA),俄罗斯文摘杂志(AJ),剑桥科学文摘(CSA)以及中国科技论文与引文数据库(CSTPCD)收录。China PARTICUOLOGY, a bimonthly interdisciplinary journal in English, purports to present the best papers in research, engineering and application in the overall field of PARTICUOLOGY, including particle characterization, particle preparation, aerosol, fluidization and ultra-fine particles. The word PARTICUOLOGY was coined to correspond to its Chinese terminology, which denotes both the science and technology of particles. Although the journal is China-based, it serves as a medium for all accepted papers of international origin, especially the best papers representing current advances in the world. Besides scientific and engineering papers, the journal includes the following sections: R & D notes, Current events, Editorials reviews, Forum for comments, opinions and qualified speculations, News on books, instruments and meetings.Now, China Particuology has been indexed by CA, AJ , CSA and CSTPCD.??读者对象(Audiences): 中国颗粒学会会员、国内外从事颗粒学和颗粒技术研究和生产的大专院校师生、科研院所及企业的研究人员和技术人员。 Member of Chinese Society of Particuology, and researchers or experts who are engaged in the study of particle sciences and technology coming from colleges, institutes and corporations all over the world.
正式出版
收录年代

    Separation density prediction of geldart A-dense medium in gas-solid fluidized bed coal beneficiators

    Chenyang ZhouChengguo LiuYue YuanZhijie Fu...
    251-262页
    查看更多>>摘要:Gas-solid Fluidized Bed Coal Beneficiator(GFBCB)process is a crucial dry coal beneficiation fluidization technology.The work employs the GFBCB process alongside a novel Geldart A-dense medium,con-sisting of Geldart A magnetite particles and Geldart C ultrafine coal,to separate small-size separated objects in the GFBCB.The effects of various operational conditions,including the volume fraction of ultrafine coal,the gas velocity,the separated objects size,and the separation time,were investigated on the GFBCB's separation performance.The results indicated that the probable error for 6~3 mm separated objects could be controlled within 0.10 g/cm3.Compared to the traditional Geldart B/D dense medium,the Geldart A/A-dense medium exhibited better size-dependent separation performance with an overall probable error 0.04~0.12 g/cm3.Moreover,it achieved a similar separation accuracy to the Geldart B/D dense medium fluidized bed with different external energy for the small-size object beneficiation.The work furthermore validated a separation density prediction model based on theoretical derivation,available for both Geldart B/D dense medium and Geldart A/A-dense medium at different operational conditions.

    Influence of stearic acid surface modification on flowability and agglomeration of battery grade Li2CO3 powder

    Ming Zhou
    263-277页
    查看更多>>摘要:This work investigates the flow and agglomeration behaviors of battery grade Li2CO3 powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity of Li2CO3 and its powder mixtures.According to the Chinese National Nonferrous Metal In-dustry Standard,battery grade Li2CO3 powder has D50 equal to 3-8 μm which belongs to a micron-sized superfine powder.Therefore,with the extension of storage time,the serious agglomeration phenomenon occurs due to the large specific surface area and rough and irregular powder particles.The Hausner ratio(HR)of the unmodified sample increases from 1.14 to 1.41,and the corresponding flowability is classified as good to poor.Instead,among samples with doping stearic acid,the optimum amount of it is 0.10 wt%which exhibits an extremely stable HR value from 1.14 to 1.16.Meanwhile,after 156 days,the repose angle(AR)obtained for samples without surface modification and using 0.10 wt%stearic acid are calculated to be 49° and 28°,respectively.Based on the values of HR and AR,the flowability of the unmodified sample is poor while the sample modified with 0.10 wt%of stearic acid still maintain excellent powder flow property.Moreover,The LiMn2O4 cathode material synthesized from modified Li2CO3 powder with a stearic acid content of 0.10 wt%exhibits good crystallinity and comparable elec-trochemical performance to that prepared by commercial Li2CO3.These results indicate that stearic acid has the potential to be an ideal modifier for battery grade Li2CO3 powder that needs to be kept for a long time.

    Modification of LiMn0.6Fe0.4PO4 lithium-ion battery cathode materials with a fluorine-doped carbon coating

    Debao PanZiyuan LiuChengping LiRundong Wan...
    278-287页
    查看更多>>摘要:In this study,glucose and NH4F were utilized as sources of carbon and fluorine,respectively,for the synthesis of LiMn0.6Fe0.4PO4(LMFP)nanoscales.These nanoscales were subsequently modified with varying levels of fluorine-doped carbon through co-precipitation and mechanical ball milling processes.The LMFP,incorporating carbon and varying levels of fluoride ions,exhibit higher specific discharge capacities at 0.2 Cand electrochemical characteristics compared to the original LMFP coated solely with carbon.The inclusion of fluorine-doped carbon in the composite material creates numerous pathways for expeditious electron transfer.Moreover,the partial formation of metal fluoride at the interface between the surface of LMFP and the layer of carbon coating doped with fluorine enhances the reduction in the charge-transfer resistance.The modified ferromanganese phosphate cathode material reveals an outstanding discharge capacity displaying a reversible discharge specific capacity value of 131.73 mA h g-1 at 10C and 154.6 mA h g-1 at 0.2C,due to its unique structure.

    Study on the force chain characteristics with coal dust layer and the three-body contact stiffness

    Xinwei YangDongxuan WuHongyue ChenDong Wang...
    288-304页
    查看更多>>摘要:To explore the influence of the meso-mechanical behaviors of the wet coal dust layers on the contact stiffness of mechanical bonding surfaces,a three-body contact model incorporating an interface with wet coal dust was constructed based on breakage theory.The model considered the mechanical surface morphology and contact characteristics of the wet coal dust.The force chain evolution laws of the wet coal dust layer were elucidated under the effects of gap filling and the cover layer,and the bearing characteristics of the three-body contact bonding surfaces were revealed by quantitative analyses of the number,length,collimation coefficient,and coordination number of the force chains within the wet coal dust layer.Finally,the three-body normal contact stiffness under various preload forces was computed and experimentally validated.The results demonstrate that the external load transfer path of the three-body contact bonding surfaces was from mechanical surface(macroscopic stress)to wet coal dust layer(mesoscopic force chains)and then to mechanical surface(peaks and valleys).The interactions among these three elements contributed to transforming the distributions of the macroscopic stresses and mesoscopic force chains to the locations at the peaks and valleys of the mechanical surface.Among them,the proportion of short force chains in the wet coal dust layer increased from approximately 0.8%-91%,while the proportion of long force chains exhibited an opposite changing trend.The force chain colli-mation coefficient initially increased and subsequently stabilized,reaching a maximum value of 0.93.A large number of broken,small particles in the wet coal dust layer mainly served to fill the gaps among large particles.The maximum relative error between the experimental and simulated values on the three-body contact stiffness is 7.26%,indicating that the simulation results can be an approximate substitute for the experimental results with a certain degree of accuracy and practicality.The research results are of great significance for understanding the contact characteristics of mechanical surfaces containing particulate media.

    MnO2-coated nanodiamond-driven photodynamic therapy for enhanced antitumor effect by addressing hypoxia and glutathione depletion

    Jicheng CuiDongmei ZhangHui QiaoZeyu Yan...
    305-315页
    查看更多>>摘要:The generation of reactive oxygen species(ROS)at the tumor site to induce destruction is emerging as a novel strategy for cancer treatment,which involves photodynamic therapy(PDT).Nevertheless,tumors typically create a hypoxic environment and are equipped with an endogenous antioxidant defense system that could potentially impede the efficiency of the therapeutic approach.To overcome these drawbacks,herein,a tumor microenvironment-responsive the ND-PAA-CD-Ce6@MnO2(NPCC@M)de-livery system was fabricated by disulfide bond coupling chlorin e6(Ce6)to nanodiamond(ND)and further wrapped by MnO2 nanosheets to facilitate PDT.The use of disulfide bond not only stabilizes Ce6 in the blood circulation to prevent premature leakage,but also destroys the antioxidant barrier of overexpressed glutathione(GSH)in tumor cells.Moreover,the outer MnO2 was rapidly degraded by the endogenous hydrogen peroxide(H2O2)in the acidic pH and GSH within the tumor cells,which leads to an abundance of O2 and while increases the level of 1O2 under laser irradiation.The results eventually broke the redox homeostasis and attenuate hypoxia,thereby inducing apoptosis and necrosis of tumor cells.Detailed in vitro and in vivo biological effect has revealed a good biosafety profile and a high tumor suppression effect.Such a novel ND-based system with tumor microenvironment-modulating capability to elevate oxygen content and promote GSH consumption in tumor cells opens new opportunities for enhanced ROS treatment paradigms.