首页期刊导航|中国科学:数学(英文版)
期刊信息/Journal information
中国科学:数学(英文版)
中国科学:数学(英文版)

周光召

月刊

1674-7283

sales@scichina.org

010-64019820

100717

北京东黄城根北街16号

中国科学:数学(英文版)/Journal Science China(Mathematics)CSCDCSTPCDSCI
查看更多>>《中国科学》是中国科学院主办、中国科学杂志社出版的自然科学专业性学术刊物。《中国科学》任务是反映中国自然科学各学科中的最新科研成果,以促进国内外的学术交流。《中国科学》以论文形式报道中国基础研究和应用研究方面具有创造性的、高水平的和有重要意义的科研成果。在国际学术界,《中国科学》作为代表中国最高水平的学术刊物也受到高度重视。国际上最具有权威的检索刊物SCI,多年来一直收录《中国科学》的论文。1999年《中国科学》夺得国家期刊奖的第一名。
正式出版
收录年代

    A unified pre-training and adaptation framework for combinatorial optimization on graphs

    Ruibin ZengMinglong LeiLingfeng NiuLan Cheng...
    1439-1456页
    查看更多>>摘要:Combinatorial optimization(CO)on graphs is a classic topic that has been extensively studied across many scientific and industrial fields.Recently,solving CO problems on graphs through learning methods has attracted great attention.Advanced deep learning methods,e.g.,graph neural networks(GNNs),have been used to effectively assist the process of solving COs.However,current frameworks based on GNNs are mainly designed for certain CO problems,thereby failing to consider their transferable and generalizable abilities among different COs on graphs.Moreover,simply using original graphs to model COs only captures the direct correlations among objects,which does not consider the mathematical logicality and properties of COs.In this paper,we propose a unified pre-training and adaptation framework for COs on graphs with the help of the maximum satisfiability(Max-SAT)problem.We first use Max-SAT to bridge different COs on graphs since they can be converted to Max-SAT problems represented by standard formulas and clauses with logical information.Then we further design a pre-training and domain adaptation framework to extract the transferable and generalizable features so that different COs can benefit from them.In the pre-training stage,Max-SAT instances are generated to initialize the parameters of the model.In the fine-tuning stage,instances from CO and Max-SAT problems are used for adaptation so that the transferable ability can be further improved.Numerical experiments on several datasets show that features extracted by our framework exhibit superior transferability and Max-SAT can boost the ability to solve COs on graphs.

    Learning to select the recombination operator for derivative-free optimization

    Haotian ZhangJianyong SunThomas B?ckZongben Xu...
    1457-1480页
    查看更多>>摘要:Extensive studies on selecting recombination operators adaptively,namely,adaptive operator selection(AOS),during the search process of an evolutionary algorithm(EA),have shown that AOS is promising for improving EA's performance.A variety of heuristic mechanisms for AOS have been proposed in recent decades,which usually contain two main components:the feature extraction and the policy setting.The feature extraction refers to as extracting relevant features from the information collected during the search process.The policy setting means to set a strategy(or policy)on how to select an operator from a pool of operators based on the extracted feature.Both components are designed by hand in existing studies,which may not be efficient for adapting optimization problems.In this paper,a generalized framework is proposed for learning the components of AOS for one of the main streams of EAs,namely,differential evolution(DE).In the framework,the feature extraction is parameterized as a deep neural network(DNN),while a Dirichlet distribution is considered to be the policy.A reinforcement learning method,named policy gradient,is used to train the DNN.As case studies,the proposed framework is applied to two DEs including the classic DE and a recently-proposed DE,which result in two new algorithms named PG-DE and PG-MPEDE,respectively.Experiments on the Congress of Evolutionary Computation(CEC)2018 test suite show that the proposed new algorithms perform significantly better than their counterparts.Finally,we prove theoretically that the considered classic methods are the special cases of the proposed framework.