查看更多>>摘要:Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative anal-ysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.
查看更多>>摘要:The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a crit-ical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29x10 5 MPa 1 for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quanti-fies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
查看更多>>摘要:High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large defor-mation in soft rock.The applied support system under high in-situ stress conditions should be able to carry high load and also accommodate large deformation without experiencing severe damage.In this paper,a specially designed energy-absorbing component for rock bolt and cable that can solve the above problems was proposed.The energy-absorbing component can provide support resistance by plastic deformation of the metal including constraint annulus and compression pipe.For practical engineering,two forms were proposed.One was installed in the surrounding rock by reaming,and the other was installed directly outside the surrounding rock.During the dilation of the surrounding rock,the relative displacement of constraint annulus and compression pipe occurs,resulting in deformation resistance.Deformation resistance is transmitted to the rock bolt or cable,providing support resistance.The lab test and numerical simulation showed that the energy-absorbing component can perfectly achieve the large deformation effect,the deformation amount is as high as 694 mm,and the bearing capacity is stable at 367 kN.The field application tests were carried out in the mining roadway of Xinjulong coal mine,and the results showed that the new type of cable can ensure itself not to break under the condition of large deformation of the surrounding rock.The energy-absorbing component has the superiorities of perform-ing large constant resistance and controllable deformation to effectively control the unpredictable disas-ters such as large deformation in soft rock and rock burst in hard rock encountered in deep strata.
查看更多>>摘要:Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these chal-lenges were investigated through numerical modelling and field applications,based on the actual oper-ating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the frac-turing process,characterized by a slowdown in crack development,indicates the transition to a well-fractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering.
查看更多>>摘要:The application of ductile rock bolts has been a crucial method for solving the problems of large defor-mations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt-the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expan-sion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
查看更多>>摘要:The wetting-drying(W-D)cycle is a type of water-rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experi-mental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage.The mass and velocity of liquid migration are related to the pore size,porosity,fluid properties,etc.Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles.At the same test time,the mass and velocity of the SI water absorption method are smaller than those of the FI method.Under these two con-ditions,the amount and rate of water absorption represent the degree of water-rock interaction.Considering the pore evolution during the wet-dry cycling,an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model.The experimental data are in excellent agreement with the calculated values of the model.Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks.Based on the interaction between permeability and pores,quantitative analysis of the weakening process(local damage)of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering.
查看更多>>摘要:The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniques such as electrochemistry,metal ion stripping,X-ray photoelectron spectroscopy,and quantum chemistry.The electrochemical test results demonstrate that the galena surface in the electro-couple system exhibits a lower electrostatic potential and higher electrochemical activity com-pared to the monoclinic pyrrhotite surface,rendering it more susceptible to oxidation dissolution.Monoclinic pyrrhotite significantly amplifies the corrosion rate of the galena surface.Mulliken charge population calculations indicate that electrons are consistently transferred from galena to monoclinic pyrrhotite,with the number of electron transfers on the mineral surface increasing as the interaction dis-tance decreases.The analysis of state density revealed a shift in the surface state density of galena towards lower energy levels,resulting in decreased reactivity and increased difficulty for the reagent to adsorb onto the mineral surface.Conversely,monoclinic pyrrhotite exhibited an opposite trend.The X-ray photoelectron spectroscopy(XPS)test results indicate that galvanic interaction leads to the forma-tion of hydrophilic substances,PbSxOy and Pb(OH)2,on the surface of galena.Additionally,the surface of monoclinic pyrrhotite not only adsorbs Pb2+but also undergoes S0 formation,thereby augmenting its hydrophobic nature.
查看更多>>摘要:An in-process technology approach is proposed to identify the source of acid mine drainage(AMD)gen-eration and prevent its formation in a porphyry copper waste rock(WR).Adopting actions before stock-piling the WR enables the establishment of potential contaminants and predicts the more convenient method for AMD prevention.A WR sample was separated into size fractions,and the WR's net acid-generating potential was quantified using chemical and mineralogical characterization.The diameter of physical locking of sulfides(DPLS)was determined,and the fractions below the DPLS were desulfur-ized using flotation.Finally,the WR fractions and tailing from the flotation test were submitted to acid-base accounting and weathering tests to evaluate their acid-generating potential.Results show that the WR's main sulfide mineral is pyrite,and the DPLS was defined as 850 μm.A sulfide recovery of 91%was achieved using a combination of HydroFloat® and Denver cells for a size fraction lower than DPLS.No grinding was conducted.The results show that size fractions greater than DPLS and the desulfurized WR are unlikely to produce AMD.The outcomes show that in-processing technology can be a more proactive approach and an effective tool for avoiding AMD in a porphyry copper WR.
查看更多>>摘要:A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flota-tion.The results showed that M-DEP had an excellent selective depression on molybdenite,while had lit-tle effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molyb-denite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.