查看更多>>摘要:Photocatalysis has emerged as a promising alternative for converting and utilizing CO2.Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,has shown considerable promise due to its adjustable band structure and inherent safety.Over the past five years,significant literature in this field has identified five primary methods for modifying PCN:morphology modulation,element doping,defect induction,co-catalyst loading,and heterojunction construction.A detailed discussion on how each modification method influences light absorption,charge separation,and surface reaction efficiencies in photocatalysis is provided.Based on these findings,several future directions for the development of PCN-based materials are proposed,such as designing tailored PCN structures for specific photocatalytic reactions and using theoretical calculations to verify and correct results from current characterization methods.Despite the challenges associated with the large-scale synthesis of PCN materials with controllable structures and satisfactory performance,this work offers valuable insights for advancing photocatalytic PCN-based systems for large-scale solar fuel production.
查看更多>>摘要:A novel ultra-stable zeolite,NSZ,rich in secondary pores was developed through the combination of gas-phase and mild hydrothermal methods.This zeolite was successfully tested in an industrial setting for the first time in the world.The pore structure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET.The results indicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5,which is produced through a conventional gas-phase method.The average secondary pore volume to total pore volume ratio in NSZ zeolite was found to be 58.96%higher.The catalytic cracking performance of NSZ zeolite was evaluated.The results showed that the NSC-LTA catalyst,with NSZ as the active component,outperformed the HSC-LTA catalyst with HSZ-5 zeolite in terms of obtaining more high-value products(gasoline and liquefied petroleum gas)during the hydrogenated light cycle oil processing.Additionally,the NSC-LTA catalyst showed a significant improvement in coke selectivity.
查看更多>>摘要:Cu/ZnO is widely used in the hydrogenation of carbon dioxide(CO2)to methanol(CH3OH)to improve the low conversion rate and selectivity generally observed.In this work,a series of In,Zr,Co,and Ni-doped CuO-ZnO catalysts was synthesized via a hydrothermal method.By introducing a second metal element,the activity and dispersion of the active sites can be adjusted and the synergy between the metal and the carrier can be enhanced,forming an abundance of oxygen vacancies.Oxygen vacancies not only adsorb CO2 but also activate the intermediates in methanol synthesis,playing a key role in the entire reaction.Co3O4-CuO-ZnO had the best catalytic performance(a CO2 conversion rate of 9.17%;a CH3OH selectivity of 92.77%).This study describes a typical strategy for multi-component doping to construct a catalyst with an abundance of oxygen vacancies,allowing more effective catalysis to synthesize CH3OH from CO2.
查看更多>>摘要:Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m2/g,well-defined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.
查看更多>>摘要:The Cu/ZnO catalyst formed upon the calcination of aurichalcite has a uniform distribution of ZnO,which can delay the sintering of Cu species at high temperatures.In this study,aurichalcite possessing a nearly pure phase was prepared using the ammonium complex dissociation precipitation method,and the effect of calcination temperature on the structure and surface properties of the derived Cu/ZnO catalyst was studied.The results show that the calcination temperature determines the particle size and crystallization degree of the Cu/ZnO catalyst and the surface properties of the corresponding copper oxide and reduced copper.Low-temperature calcination is more conducive to reducing the particle size of the Cu/ZnO catalyst,increasing the specific surface area,and generating abundant defect characteristics on the surface,which is key to obtaining highly dispersed copper and copper-specific surface area catalysts by subsequent reduction.Additionally,the Cu/ZnO catalyst derived using a 300℃or 400℃calcination proved to have a higher specific activity per gram of copper than a commercial Cu/Zn/Al catalyst.The discovery in this study opens up a new method for the convenient preparation of a high-temperature resistant Cu/Zn methanol reforming catalyst.
查看更多>>摘要:Organic-inorganic MoO3/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benzylamine to N-benzylidene benzylamine(N-BDBA)in ambient air under simulated solar light irradiation compared to pristine MoO3 or polyimide(PI).In particular,the MoPI composite with a 0.3:1 molar ratio of Mo to melamine,referred to as MoPI-0.3,demonstrated the best performance in the photo-oxidation of benzylamine,achieving a benzylamine conversion of 95%with a N-BDBA selectivity exceeding 99%after 3 h irradiation.The enhanced photocatalytic activity of the MoPI-0.3 catalyst was attributed to the formation of a direct Z-scheme heterojunction between MoO3 and PI,facilitating more efficient separation of the photoinduced electrons and holes.Additionally,the MoPI-0.3 composite maintained considerably high activity over four consecutive cycles,highlighting its good stability and recyclability.Furthermore,the MoPI-0.3 composite could photo-oxidize benzylamine derivatives and heterocyclic amines to their corresponding imines,demonstrating the universal applicability of this composite catalyst.
查看更多>>摘要:The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
查看更多>>摘要:Utilizing solvent extraction to separate alkanes and olefins from catalytic light gasoline is an effective method for maximizing the utility of gasoline fractions.This study presents the determination of liquid-liquid equilibrium data for the ternary system of 1-hexene-n-hexane-3-methylsulfolane at 30℃,40℃,and 50℃under atmospheric pressure.The obtained data facilitated the construction of a ternary phase diagram for the system.The results showed that the extraction selectivity of 1-hexene/n-hexane exceeded 1.5 when using 3-methylsulfolane as the extraction solvent.Furthermore,the thermodynamic consistency of the experimental data was examined using Hand's equation and the Othmer-Tobias method.The correlation coefficient,R2≥0.9578,indicated the acceptable reliability of the phase equilibrium data.Subsequently,the NRTL(non-random two liquid)model was used to correlate the liquid-liquid phase equilibrium data and derive the binary interaction parameter.Notably,the results demonstrated that the root mean square deviation of the NRTL model correlation values from the experimental values did not exceed 2.5%.
查看更多>>摘要:Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external magnetic field,these materials exhibit varying magnetorheological and viscoelastic properties,including shear stress,yield stress,dynamic moduli,and damping.In this work,a new type of MRE,termed self-healing MREs(SH-MREs),has been developed by adding a novel self-healing agent into existing MREs.The dynamic modulus and loss factor of SH-MREs with different compositions have been characterized under various conditions of frequency,temperature,and strain.The results show that as the strain value increases,the loss factor also increases.Moreover,the loss factor initially increases and then decreases with increasing magnetic field strength.Although higher concentrations of ferromagnetic particles increase the loss factor,they enhance the operational range due to their better responsiveness to magnetic fields.SH-MREs demonstrate improved damping capabilities,attributed to the formation of coordination bonds between ferromagnetic particles and the self-healing agent.The stable structure increases the viscosity of MREs.The results of the regression model suggest a direct proportionality between sensitivity to the magnetic field and the ferromagnetic particle concentration.
Li HongzhenLi ShengbinFeng ZhuangzhuangJiang Mengmeng...
98-107页
查看更多>>摘要:In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related properties,and micromorphology.Base oils composed of different proportions of aromatic and saturated hydrocarbons as well as the styrene-butadiene-styrene(SBS)restorer were used to prepare the regenerants.The results showed that the components of the base oil of the regenerant played a crucial role in determining the characteristics and performance of the recycled SBS-modified asphalt.Regenerants containing a high proportion of aromatics dissolved the hard segment in the SBS restorer,thereby delaying the effect of a reduction in the regenerants on the performance of the aged asphalts at a high temperature.Regenerants containing a high proportion of saturates dissolved the soft segment in the SBS restorer to enhance the low-temperature performance of the recycled asphalts.In addition,the stress sensitivity of the recycled asphalts increased with the fraction of aromatics in the regenerant.As the aromatic content of the base oil components of the regenerants increased and their saturate content decreased,the state of dispersion of the SBS phase in the recycled SBS-modified asphalts improved.The optimal content of aromatics in the base oil of the regenerants should be set in the range of 33%to 47%to ensure the adequate performance of the recycled asphalts and a high efficiency of the SBS restorer.