首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    图像分类的深度卷积神经网络模型综述

    张珂冯晓晗郭玉荣苏昱坤...
    2305-2325页
    查看更多>>摘要:图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性.随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法.本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析.虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快.然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向.

    深度学习图像分类(IC)深度卷积神经网络(DCNN)模型结构模型优化

    中国图像工程25年

    章毓晋
    2326-2336页
    查看更多>>摘要:本文是对至今已连续发表25年的中国图像工程年度文献综述系列的概括回顾.近25年来,为了使国内广大从事图像工程研究和图像技术应用的科技人员能够较全面地了解图像工程研究和发展的现状,能够有针对性地查询有关文献,并向期刊编者和作者提供有用的参考,笔者每年都对上一年度图像工程的相关文献进行统计和分析.25年间,该综述系列从国内15种有关图像工程重要期刊所发行的共2964期上所发表的65040篇学术研究和技术应用文献中,选取出15856篇属于图像工程领域的文献,并根据各文献的主要内容将其分别归入图像处理、图像分析、图像理解、技术应用和综述评论5个大类,然后进一步分入23个专业小类,并在此基础上分别进行各期刊各类文献的统计和分析.此次回顾,除汇总了25年的统计分类情况,还着重对一些主要的研究方向进行了分析和讨论.这样,不仅可从中了解最近四分之一个世纪图像工程相关文献的发表情况,还可以提供全面和可信的各研究方向发展趋势的信息.

    图像工程(IE)图像处理(IP)图像分析(IA)图像理解(IU)技术应用(TA)文献综述文献分类文献计量学

    FGSC-23:面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集

    姚力波张筱晗吕亚飞孙炜玮...
    2337-2345页
    查看更多>>摘要:目的 基于光学遥感图像的舰船目标识别研究广受关注,但是目前公开的光学遥感图像舰船目标识别数据集存在规模小、目标类别少等问题,难以训练出具有较高舰船识别精度的深度学习模型.为此,本文面向基于深度学习的舰船目标精细识别任务研究需求,搜集公开的包含舰船目标的高分辨率谷歌地球和GF-2卫星水面场景遥感图像,构建了一个高分辨率光学遥感图像舰船目标精细识别数据集(fine-grained ship collection-23,FGSC-23).方法 将图像中的舰船目标裁剪出来,制作舰船样本切片,人工对目标类别进行标注,并在每个切片中增加舰船长宽比和分布方向两类属性标签,最终形成包含23个类别、4052个实例的舰船目标识别数据集.结果 按1:4比例将数据集中各类别图像随机划分为测试集和训练集,并展开验证实验.实验结果表明,在通用识别模型识别效果验证中,VGG16(Visual Geometry Group 16-layer net)、ResNet50、Inception-v3、DenseNet121、MobileNet和Xception等经典卷积神经网络(convolutional neural network,CNN)模型的整体测试精度分别为79.88%、81.33%、83.88%、84.00%、84.24%和87.76%;在舰船目标精细识别的模型效果验证中,以VGG16和ResNet50模型为基准网络,改进模型在测试集上的整体测试精度分别为93.58%和93.09%.结论 构建的FGSC-23数据集能够满足舰船目标识别算法的验证任务.

    光学遥感图像舰船目标精细识别数据集深度学习

    并行生成网络的红外—可见光图像转换

    余佩伦施佺王晗
    2346-2356页
    查看更多>>摘要:目的 针对现有图像转换方法的深度学习模型中生成式网络(generator network)结构单一化问题,改进了条件生成式对抗网络(conditional generative adversarial network,CGAN)的结构,提出了一种融合残差网络(ResNet)和稠密网络(DenseNet)两种不同结构的并行生成器网络模型.方法 构建残差、稠密生成器分支网络模型,输入红外图像,分别经过残差、稠密生成器分支网络各自生成可见光转换图像,并提出一种基于图像分割的线性插值算法,将各生成器分支网络的转换图像进行融合,获取最终的可见光转换图像;为防止小样本条件下的训练过程中出现过拟合,在判别器网络结构中插入dropout层;设计最优阈值分割目标函数,在并行生成器网络训练过程中获取最优融合参数.结果 在公共红外—可见光数据集上测试,相较于现有图像转换深度学习模型Pix2Pix和CycleGAN等,本文方法在性能指标均方误差(mean square error,MSE)和结构相似性(structural similarity index,SSIM)上均取得显著提高.结论 并行生成器网络模型有效融合了各分支网络结构的优点,图像转换结果更加准确真实.

    模态转换残差网络稠密网络线性插值融合并行生成器网络

    穿鞋足迹序列的足迹能量图组表达与识别

    王新年于丹张涛
    2357-2375页
    查看更多>>摘要:目的 现有的足迹研究主要针对赤足和穿袜足迹,取得了较高的识别精度,但需要进行脱鞋配合;而单枚穿鞋足迹由于受到鞋底花纹的影响,识别精度低,主要用于检索.由于穿鞋足迹序列不仅包含人足的结构特征还包含人行走的运动特征,将其用于人身识别会比基于单枚穿鞋足迹的识别精度高.基于此,本文对基于穿鞋足迹序列的身份识别方法进行了研究,提出了穿鞋足迹序列的足迹能量图组表达与识别算法.方法 构建反映人足结构和走路行为特性的足迹能量图组来表达足迹序列,从而进行身份识别.足迹能量图组由步态能量图、步幅能量图和步宽能量图构成.步态能量图反映的是足底各个部位与承痕体相互作用形成的效果以及脚的解剖结构特征;步幅能量图和步宽能量图反映的是行走过程中双脚的空间搭配关系以及运动特征,体现人的行为信息.足迹序列之间的匹配得分由各能量图之间的相似度加权计算,其中加权系数采用铰链损失函数训练而得,各能量图之间的相似度采用归一化互相关函数计算而得.将匹配得分最高的足迹序列对应的标签作为最终的识别结果.结果 根据采集方式、鞋的新旧程度和鞋底花纹种类构建了3个数据集,分别为采用光学成像仪采集的穿日常鞋的穿鞋足迹序列数据集MUSSRO-SR、采用光学成像仪采集的穿同花纹新鞋的穿鞋足迹序列数据集MUSSRO-SS和采用墨拓扫描方式采集的穿新鞋的穿鞋足迹序列数据集MUSSRS-SS.分别在上述3个数据集上进行了识别模式和验证模式实验,识别率分别达到100%、97.65%和83%,等错误率分别为0.36%、1.17%和6.99%.结论 在3种类型不同的数据集上的实验结果表明,本文提出的足迹能量图组能够实现对穿鞋足迹序列的有效表达,并实际验证了基于穿鞋足迹序列的身份识别的可行性.

    身份识别穿鞋足迹序列识别足迹能量图组(SEMS)步态能量图(TEM)步幅能量图(SEM)步宽能量图(SWEM)

    时空图卷积网络与注意机制的视频目标分割

    姚睿夏士雄周勇赵佳琦...
    2376-2387页
    查看更多>>摘要:目的 从大量数据中学习时空目标模型对于半监督视频目标分割任务至关重要,现有方法主要依赖第1帧的参考掩膜(通过光流或先前的掩膜进行辅助)估计目标分割掩膜.但由于这些模型在对空间和时域建模方面的局限性,在快速的外观变化或遮挡下很容易失效.因此,提出一种时空部件图卷积网络模型生成鲁棒的时空目标特征.方法 首先,使用孪生编码模型,该模型包括两个分支:一个分支输入历史帧和掩膜捕获序列的动态特征,另一个分支输入当前帧图像和前一帧的分割掩膜.其次,构建时空部件图,使用图卷积网络学习时空特征,增强目标的外观和运动模型,并引入通道注意模块,将鲁棒的时空目标模型输出到解码模块.最后,结合相邻阶段的多尺度图像特征,从时空信息中分割出目标.结果 在DAVIS(densely annotated video segmentation)-2016和DAVIS-2017两个数据集上与最新的12种方法进行比较,在DAVIS-2016数据集上获得了良好性能,Jacccard相似度平均值(Jaccard similarity-mean,J-M)和F度量平均值(F measure-mean,F-M)得分达到了85.3%,比性能最高的对比方法提高了1.7%;在DAVIS-2017数据集上,J-M和F-M得分达到了68.6%,比性能最高的对比方法提高了1.2%.同时,在DAVIS-2016数据集上,进行了网络输入与后处理的对比实验,结果证明本文方法改善了多帧时空特征的效果.结论 本文方法不需要在线微调和后处理,时空部件图模型可缓解因目标外观变化导致的视觉目标漂移问题,同时平滑精细模块增加了目标边缘细节信息,提高了视频目标分割的性能.

    视频目标分割(VOS)图卷积网络时空特征注意机制深度神经网络

    多支路协同的RGB-T图像显著性目标检测

    蒋亭亭刘昱马欣孙景林...
    2388-2399页
    查看更多>>摘要:目的 显著性目标检测是机器视觉应用的基础,然而目前很多方法在显著性物体与背景相似、低光照等一些复杂场景得到的效果并不理想.为了提升显著性检测的性能,提出一种多支路协同的RGB-T(thermal)图像显著性目标检测方法.方法 将模型主体设计为两条主干网络和三条解码支路.主干网络用于提取RGB图像和Ther-mal图像的特征表示,解码支路则分别对RGB特征、Thermal特征以及两者的融合特征以协同互补的方式预测图像中的显著性物体.在特征提取的主干网络中,通过特征增强模块实现多模图像的融合互补,同时采用适当修正的金字塔池化模块,从深层次特征中获取全局语义信息.在解码过程中,利用通道注意力机制进一步区分卷积神经网络(convolutional neural networks,CNN)生成的特征在不同通道之间对应的语义信息差异.结果 在VT821和VT1000两个数据集上进行测试,本文方法的最大F-measure值分别为0.8437和0.8805,平均绝对误差(mean absolute error,MAE)值分别为0.0394和0.0322,相较于对比方法,提升了整体检测性能.结论 通过对比实验表明,本文提出的方法提高了显著性检测的稳定性,在一些低光照场景取得了更好效果.

    RGB-T显著性目标检测多模图像融合多支路协同预测通道注意力机制金字塔池化模块(PPM)

    改进R-FCN模型的小尺度行人检测

    刘万军董利兵曲海成
    2400-2410页
    查看更多>>摘要:目的 为了有效解决传统行人检测算法在分辨率低、行人尺寸较小等情境下检测精度低的问题,将基于区域全卷积网络(region-based fully convolutional networks,R-FCN)的目标检测算法引入到行人检测中,提出一种改进R-FCN模型的小尺度行人检测算法.方法 为了使特征提取更加准确,在ResNet-101的conv5阶段中嵌入可变形卷积层,扩大特征图的感受野;为提高小尺寸行人检测精度,在ResNet-101中增加另一条检测路径,对不同尺寸大小的特征图进行感兴趣区域池化;为解决小尺寸行人检测中的误检问题,利用自举策略的非极大值抑制算法代替传统的非极大值抑制算法.结果 在基准数据集Caltech上进行评估,实验表明,改进的R-FCN算法与具有代表性的单阶段检测器(single shot multiBox detector,SSD)算法和两阶段检测器中的Faster R-CNN(region convolutional neu-ral network)算法相比,检测精度分别提高了3.29% 和2.78%;在相同ResNet-101基础网络下,检测精度比原始R-FCN算法提高了12.10%.结论 本文提出的改进R-FCN模型,使小尺寸行人检测精度更加准确.相比原始模型,改进的R-FCN模型对行人检测的精确率和召回率有更好的平衡能力,在保证精确率的同时,具有更大的召回率.

    行人检测区域全卷积网络(R-FCN)可变形卷积多路径非极大值抑制(NMS)Caltech数据集

    边缘与区域不一致性引导下的图像拼接篡改检测网络

    蒋小玉刘春晓
    2411-2420页
    查看更多>>摘要:目的 针对已有图像拼接篡改检测方法中存在的真伪判断分类精度不高、拼接篡改区域定位不准确问题,本文设计了一种篡改边缘两侧和篡改区域内外不一致性引导下的重点关注篡改区域与篡改边缘的图像拼接篡改检测卷积神经网络.方法 图像内容在篡改过程中,拼接物体的边缘都会留下篡改痕迹,这是图像拼接篡改检测的重要线索.因此,本文设计了一条篡改边缘提取分支,通过学习拼接物体边缘两侧的不一致性,重点提取拼接篡改区域的边缘轮廓.考虑到篡改边缘像素点过少会导致网络难以收敛,提出一个边缘加粗策略,形成一个边缘加粗的"甜甜圈",使得篡改边缘提取结果更具完整性.在不同图像采集过程中,所用相机设备和光线条件等因素不同,导致每幅图像包含的信息也不尽相同.对此,设计了一条篡改区域定位分支,重点学习来自不同图像拼接区域与周围区域之间不一致性的差异化特征,并将注意力机制引入图像拼接篡改检测的篡改区域定位分支,进一步提高对拼接篡改区域的学习关注程度.面向真伪判断设计了一条图像是否经过拼接篡改的二分类网络分支,不但可以快速有效地给出输入图像是否为篡改图像的判断结果,而且可以与上述两条分支的输出结果一起提供给用户,由用户结合视觉语义信息进行综合判断.结果 本文算法与已有的4个代表性方法在4个专业数据集上进行算法实验和性能比较.在真伪判断分类的精确度方面,在Dresden、COCO(common objects in context)、RAISE(a raw images dataset for digital image forensics)和IFS-TC(information forensics and security technical committee)数据集上分别提高了8.3%、4.6%、1.0% 和1.0%;在篡改区域定位的准确度方面,F1评分与重叠度IOU(intersection over union)指标较已有方法分别提升了9.4%和8.6%.结论 本文算法将真伪判别分类、篡改区域定位和篡改边缘提取融合在一起,互相促进,较大提升了各分支任务的性能表现,在图像拼接篡改检测方面取得了优于已有方法的效果,为数字图像取证技术领域的研究工作拓展了思路.

    图像拼接篡改检测卷积神经网络(CNN)篡改区域定位篡改边缘提取真伪判别分类

    各向异性导向滤波的红外与可见光图像融合

    刘明葳王任华李静焦映臻...
    2421-2432页
    查看更多>>摘要:目的 针对红外与可见光图像融合时易产生边缘细节信息丢失、融合结果有光晕伪影等问题,同时为充分获取多源图像的重要特征,将各向异性导向滤波和相位一致性结合,提出一种红外与可见光图像融合算法.方法 首先,采用各向异性导向滤波从源图像获得包含大尺度变化的基础图和包含小尺度细节的系列细节图;其次,利用相位一致性和高斯滤波计算显著图,进而通过对比像素显著性得到初始权重二值图,再利用各向异性导向滤波优化权重图,达到去除噪声和抑制光晕伪影;最后,通过图像重构得到融合结果.结果 从主客观两个方面,将所提方法与卷积神经网络(convolutional neural network,CNN)、双树复小波变换(dual-tree complex wavelet transform,DTC-WT)、导向滤波(guided filtering,GFF)和各向异性扩散(anisotropic diffusion,ADF)等4种经典红外与可见光融合方法在TNO公开数据集上进行实验对比.主观分析上,所提算法结果在边缘细节、背景保存和目标完整度等方面均优于其他4种方法;客观分析上,选取互信息(mutual information,MI)、边缘信息保持度(degree of edge information,QAB/F)、熵(entropy,EN)和基于梯度的特征互信息(gradient based feature mutual information,FMI_gradient)等4种图像质量评价指数进行综合评价.相较于其他4种方法,本文算法的各项指标均有一定幅度的提高,MI平均值较GFF提高了21.67%,QAB/F平均值较CNN提高了20.21%,EN平均值较CNN提高了5.69%,FMI_gradient平均值较GFF提高了3.14%.结论 本文基于各向异性导向滤波融合算法可解决原始导向滤波存在的细节"光晕"问题,有效抑制融合结果中伪影的产生,同时具有尺度感知特性,能更好保留源图像的边缘细节信息和背景信息,提高了融合结果的准确性.

    图像融合多尺度分解(MSD)边缘保持滤波各向异性导向滤波(AnisGF)相位一致性(PC)