首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    改进U-Net型网络的遥感图像道路提取

    杨佳林郭学俊陈泽华
    3005-3014页
    查看更多>>摘要:目的 遥感图像道路提取在城市规划、交通管理、车辆导航和地图更新等领域中发挥了重要作用,但遥感图像受光照、噪声和遮挡等因素以及识别过程中大量相似的非道路目标干扰,导致提取高质量的遥感图像道路有很大难度.为此,提出一种结合上下文信息和注意力机制的U-Net型道路分割网络.方法 使用Resnet-34预训练网络作为编码器实现特征提取,通过上下文信息提取模块对图像的上下文信息进行整合,确保对道路的几何拓扑结构特征的提取;使用注意力机制对跳跃连接传递的特征进行权重调整,提升网络对于道路边缘区域的分割效果.结果 在公共数据集Deep Globe道路提取数据集上对模型进行测试,召回率和交并比指标分别达到0.8472和0.6915.与主流方法U-Net和CE-Net(context encoder network)等进行比较,实验结果表明本文方法在性能上表现良好,能有效提高道路分割的精确度.结论 本文针对遥感图像道路提取中道路结构不完整和道路边缘区域不清晰问题,提出一种结合上下文信息和注意力机制的遥感道路提取模型.实验结果表明该网络在遥感图像道路提取上达到良好效果,具有较高的研究和应用价值.

    U-Net深度学习遥感图像道路提取残差网络注意力机制

    弱监督深度语义分割网络的多源遥感影像水体检测

    李鑫伟李彦胜张永军
    3015-3026页
    查看更多>>摘要:目的 深度语义分割网络的优良性能高度依赖于大规模和高质量的像素级标签数据.在现实任务中,收集大规模、高质量的像素级水体标签数据将耗费大量人力物力.为了减少标注工作量,本文提出使用已有的公开水体覆盖产品来创建遥感影像对应的水体标签,然而已有的公开水体覆盖产品的空间分辨率低且存在一定错误.对此,提出采用弱监督深度学习方法训练深度语义分割网络.方法 在训练阶段,将原始数据集划分为多个互不重叠的子数据集,分别训练深度语义分割网络,并将训练得到的多个深度语义分割网络协同更新标签,然后利用更新后的标签重复前述过程,重新训练深度语义分割网络,多次迭代后可以获得好的深度语义分割网络.在测试阶段,多源遥感影像经多个代表不同视角的深度语义分割网络分别预测,然后投票产生最后的水体检测结果.结果 为了验证本文方法的有效性,基于原始多源遥感影像数据创建了一个面向水体检测的多源遥感影像数据集,并与基于传统的水体指数阈值分割法和基于低质量水体标签直接学习的深度语义分割网络进行比较,交并比(intersection-over-union,IoU)分别提升了5.5%和7.2%.结论 实验结果表明,本文方法具有收敛性,并且光学影像和合成孔径雷达(synthetic aperture radar,SAR)影像的融合有助于提高水体检测性能.在使用分辨率低、噪声多的水体标签进行训练的情况下,训练所得多视角模型的水体检测精度明显优于基于传统的水体指数阈值分割法和基于低质量水体标签直接学习的深度语义分割网络.

    水体检测多源遥感影像低分辨率噪声标签弱监督深度语义分割网络